Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386018510> ?p ?o ?g. }
- W4386018510 endingPage "112428" @default.
- W4386018510 startingPage "112428" @default.
- W4386018510 abstract "One of the most challenging and consequential problems in climate modeling is to provide probabilistic projections of sea level rise. A large part of the uncertainty of sea level projections is due to uncertainty in ice sheet dynamics. At the moment, accurate quantification of the uncertainty is hindered by the cost of ice sheet computational models. In this work, we develop a hybrid approach to approximate existing ice sheet computational models at a fraction of their cost. Our approach consists of replacing the finite element model for the momentum equations for the ice velocity, the most expensive part of an ice sheet model, with a Deep Operator Network, while retaining a classic finite element discretization for the evolution of the ice thickness. We show that the resulting hybrid model is very accurate and it is an order of magnitude faster than the traditional finite element model. Further, a distinctive feature of the proposed model compared to other neural network approaches, is that it can handle high-dimensional parameter spaces (parameter fields) such as the basal friction at the bed of the glacier, and can therefore be used for generating samples for uncertainty quantification. We study the impact of hyper-parameters, number of unknowns and correlation length of the parameter distribution on the training and accuracy of the Deep Operator Network on a synthetic ice sheet model. We then target the evolution of the Humboldt glacier in Greenland and show that our hybrid model can provide accurate statistics of the glacier mass loss and can be effectively used to accelerate the quantification of uncertainty." @default.
- W4386018510 created "2023-08-21" @default.
- W4386018510 creator A5009658255 @default.
- W4386018510 creator A5045526609 @default.
- W4386018510 creator A5076542592 @default.
- W4386018510 creator A5078411693 @default.
- W4386018510 creator A5087475327 @default.
- W4386018510 date "2023-11-01" @default.
- W4386018510 modified "2023-10-12" @default.
- W4386018510 title "A Hybrid Deep Neural Operator/Finite Element Method for Ice-Sheet Modeling" @default.
- W4386018510 cites W1575501007 @default.
- W4386018510 cites W1996216696 @default.
- W4386018510 cites W2050248855 @default.
- W4386018510 cites W2089774562 @default.
- W4386018510 cites W2094160803 @default.
- W4386018510 cites W2097718805 @default.
- W4386018510 cites W2104275055 @default.
- W4386018510 cites W2104802962 @default.
- W4386018510 cites W2106544729 @default.
- W4386018510 cites W2120999070 @default.
- W4386018510 cites W2139923370 @default.
- W4386018510 cites W2151653380 @default.
- W4386018510 cites W2313804978 @default.
- W4386018510 cites W2529348500 @default.
- W4386018510 cites W2536989438 @default.
- W4386018510 cites W2797257963 @default.
- W4386018510 cites W2903644476 @default.
- W4386018510 cites W2946141553 @default.
- W4386018510 cites W2953145723 @default.
- W4386018510 cites W2968663866 @default.
- W4386018510 cites W3008786499 @default.
- W4386018510 cites W3121585327 @default.
- W4386018510 cites W3137474564 @default.
- W4386018510 cites W3159951467 @default.
- W4386018510 cites W3208453486 @default.
- W4386018510 cites W4205605878 @default.
- W4386018510 cites W4214849959 @default.
- W4386018510 cites W42325346 @default.
- W4386018510 cites W4283750495 @default.
- W4386018510 cites W4308936193 @default.
- W4386018510 cites W4308979219 @default.
- W4386018510 doi "https://doi.org/10.1016/j.jcp.2023.112428" @default.
- W4386018510 hasPublicationYear "2023" @default.
- W4386018510 type Work @default.
- W4386018510 citedByCount "2" @default.
- W4386018510 countsByYear W43860185102023 @default.
- W4386018510 crossrefType "journal-article" @default.
- W4386018510 hasAuthorship W4386018510A5009658255 @default.
- W4386018510 hasAuthorship W4386018510A5045526609 @default.
- W4386018510 hasAuthorship W4386018510A5076542592 @default.
- W4386018510 hasAuthorship W4386018510A5078411693 @default.
- W4386018510 hasAuthorship W4386018510A5087475327 @default.
- W4386018510 hasConcept C100834320 @default.
- W4386018510 hasConcept C104317684 @default.
- W4386018510 hasConcept C11413529 @default.
- W4386018510 hasConcept C114793014 @default.
- W4386018510 hasConcept C123750103 @default.
- W4386018510 hasConcept C126255220 @default.
- W4386018510 hasConcept C127313418 @default.
- W4386018510 hasConcept C127413603 @default.
- W4386018510 hasConcept C134306372 @default.
- W4386018510 hasConcept C135628077 @default.
- W4386018510 hasConcept C136894858 @default.
- W4386018510 hasConcept C154945302 @default.
- W4386018510 hasConcept C158448853 @default.
- W4386018510 hasConcept C17020691 @default.
- W4386018510 hasConcept C185592680 @default.
- W4386018510 hasConcept C197435368 @default.
- W4386018510 hasConcept C2780223605 @default.
- W4386018510 hasConcept C28826006 @default.
- W4386018510 hasConcept C33923547 @default.
- W4386018510 hasConcept C41008148 @default.
- W4386018510 hasConcept C49204034 @default.
- W4386018510 hasConcept C49937458 @default.
- W4386018510 hasConcept C50644808 @default.
- W4386018510 hasConcept C55493867 @default.
- W4386018510 hasConcept C66938386 @default.
- W4386018510 hasConcept C73000952 @default.
- W4386018510 hasConcept C86339819 @default.
- W4386018510 hasConceptScore W4386018510C100834320 @default.
- W4386018510 hasConceptScore W4386018510C104317684 @default.
- W4386018510 hasConceptScore W4386018510C11413529 @default.
- W4386018510 hasConceptScore W4386018510C114793014 @default.
- W4386018510 hasConceptScore W4386018510C123750103 @default.
- W4386018510 hasConceptScore W4386018510C126255220 @default.
- W4386018510 hasConceptScore W4386018510C127313418 @default.
- W4386018510 hasConceptScore W4386018510C127413603 @default.
- W4386018510 hasConceptScore W4386018510C134306372 @default.
- W4386018510 hasConceptScore W4386018510C135628077 @default.
- W4386018510 hasConceptScore W4386018510C136894858 @default.
- W4386018510 hasConceptScore W4386018510C154945302 @default.
- W4386018510 hasConceptScore W4386018510C158448853 @default.
- W4386018510 hasConceptScore W4386018510C17020691 @default.
- W4386018510 hasConceptScore W4386018510C185592680 @default.
- W4386018510 hasConceptScore W4386018510C197435368 @default.
- W4386018510 hasConceptScore W4386018510C2780223605 @default.
- W4386018510 hasConceptScore W4386018510C28826006 @default.
- W4386018510 hasConceptScore W4386018510C33923547 @default.