Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386028504> ?p ?o ?g. }
- W4386028504 endingPage "3588" @default.
- W4386028504 startingPage "3588" @default.
- W4386028504 abstract "The paper aims to study a discrete boundary value problem of the Kirchhoff type based on the critical point theory and the strong maximum principle. Compared to the existing literature, the existence and multiplicity of positive solutions to the problem are considered according to the behavior of the nonlinear term f in some points between the zero and positive infinity, which is a new attempt. Under different assumptions of the nonlinear term f, we obtain the determined open intervals of the parameter λ, such that the problem has at least three positive solutions or at least two positive solutions in different intervals. In the end, two concrete examples are used to illustrate our main conclusions." @default.
- W4386028504 created "2023-08-22" @default.
- W4386028504 creator A5049593169 @default.
- W4386028504 creator A5068593205 @default.
- W4386028504 date "2023-08-19" @default.
- W4386028504 modified "2023-09-27" @default.
- W4386028504 title "Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type" @default.
- W4386028504 cites W13811575 @default.
- W4386028504 cites W1578461620 @default.
- W4386028504 cites W1970663591 @default.
- W4386028504 cites W1971619733 @default.
- W4386028504 cites W1990001452 @default.
- W4386028504 cites W2002734667 @default.
- W4386028504 cites W2013791839 @default.
- W4386028504 cites W2024538755 @default.
- W4386028504 cites W2025094778 @default.
- W4386028504 cites W2048125883 @default.
- W4386028504 cites W2049082762 @default.
- W4386028504 cites W2052451778 @default.
- W4386028504 cites W2070149682 @default.
- W4386028504 cites W2103122786 @default.
- W4386028504 cites W2116032482 @default.
- W4386028504 cites W2154634365 @default.
- W4386028504 cites W2264759871 @default.
- W4386028504 cites W2528070554 @default.
- W4386028504 cites W2536849670 @default.
- W4386028504 cites W2802971892 @default.
- W4386028504 cites W2900729111 @default.
- W4386028504 cites W2972185439 @default.
- W4386028504 cites W2990879582 @default.
- W4386028504 cites W3157684885 @default.
- W4386028504 cites W4221057965 @default.
- W4386028504 cites W4224032119 @default.
- W4386028504 cites W4226464084 @default.
- W4386028504 cites W4234530077 @default.
- W4386028504 cites W4283018001 @default.
- W4386028504 cites W4285231491 @default.
- W4386028504 cites W4294958827 @default.
- W4386028504 cites W4296582295 @default.
- W4386028504 cites W4319738004 @default.
- W4386028504 cites W4366775651 @default.
- W4386028504 doi "https://doi.org/10.3390/math11163588" @default.
- W4386028504 hasPublicationYear "2023" @default.
- W4386028504 type Work @default.
- W4386028504 citedByCount "0" @default.
- W4386028504 crossrefType "journal-article" @default.
- W4386028504 hasAuthorship W4386028504A5049593169 @default.
- W4386028504 hasAuthorship W4386028504A5068593205 @default.
- W4386028504 hasBestOaLocation W43860285041 @default.
- W4386028504 hasConcept C121332964 @default.
- W4386028504 hasConcept C134306372 @default.
- W4386028504 hasConcept C138885662 @default.
- W4386028504 hasConcept C156004811 @default.
- W4386028504 hasConcept C158622935 @default.
- W4386028504 hasConcept C182310444 @default.
- W4386028504 hasConcept C18903297 @default.
- W4386028504 hasConcept C2777299769 @default.
- W4386028504 hasConcept C2780813799 @default.
- W4386028504 hasConcept C28826006 @default.
- W4386028504 hasConcept C33923547 @default.
- W4386028504 hasConcept C41895202 @default.
- W4386028504 hasConcept C61797465 @default.
- W4386028504 hasConcept C62520636 @default.
- W4386028504 hasConcept C7321624 @default.
- W4386028504 hasConcept C86803240 @default.
- W4386028504 hasConceptScore W4386028504C121332964 @default.
- W4386028504 hasConceptScore W4386028504C134306372 @default.
- W4386028504 hasConceptScore W4386028504C138885662 @default.
- W4386028504 hasConceptScore W4386028504C156004811 @default.
- W4386028504 hasConceptScore W4386028504C158622935 @default.
- W4386028504 hasConceptScore W4386028504C182310444 @default.
- W4386028504 hasConceptScore W4386028504C18903297 @default.
- W4386028504 hasConceptScore W4386028504C2777299769 @default.
- W4386028504 hasConceptScore W4386028504C2780813799 @default.
- W4386028504 hasConceptScore W4386028504C28826006 @default.
- W4386028504 hasConceptScore W4386028504C33923547 @default.
- W4386028504 hasConceptScore W4386028504C41895202 @default.
- W4386028504 hasConceptScore W4386028504C61797465 @default.
- W4386028504 hasConceptScore W4386028504C62520636 @default.
- W4386028504 hasConceptScore W4386028504C7321624 @default.
- W4386028504 hasConceptScore W4386028504C86803240 @default.
- W4386028504 hasFunder F4320321001 @default.
- W4386028504 hasIssue "16" @default.
- W4386028504 hasLocation W43860285041 @default.
- W4386028504 hasOpenAccess W4386028504 @default.
- W4386028504 hasPrimaryLocation W43860285041 @default.
- W4386028504 hasRelatedWork W1545842509 @default.
- W4386028504 hasRelatedWork W2047313820 @default.
- W4386028504 hasRelatedWork W2078610597 @default.
- W4386028504 hasRelatedWork W2168449336 @default.
- W4386028504 hasRelatedWork W2562156175 @default.
- W4386028504 hasRelatedWork W2951391724 @default.
- W4386028504 hasRelatedWork W3192345888 @default.
- W4386028504 hasRelatedWork W4240307029 @default.
- W4386028504 hasRelatedWork W4296951292 @default.
- W4386028504 hasRelatedWork W4313304700 @default.
- W4386028504 hasVolume "11" @default.
- W4386028504 isParatext "false" @default.