Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386029116> ?p ?o ?g. }
- W4386029116 abstract "Abstract The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC), and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data, and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone’s cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations. Author summary Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is a parasitic infection transmitted by tsetse in sub-Saharan Africa. The distribution of infections is patchy and highly correlated to the regions where humans and tsetse interact. This presents the need for mathematical models trained to the particular regions where cases occur. We show how a stochastic model for gHAT, which captures chance events particularly prominent in small populations or with extremely low infection levels, can be directly calibrated to data from health areas of the Democratic Republic of Congo (DRC) (regions of approximately 10,000 people). This stochastic model fitting approach allows us to understand drivers of transmission in different health areas and subsequently model targeted control interventions within these different health areas. Results for the health areas within the Mosango health zone show that this modelling approach corresponds to results for larger scale modelling, but provides greater detail in the locations where cases occur. By better reflecting the real-world situation in the model, we aim to achieve improved recommendations in how and where to focus efforts and achieve elimination of gHAT transmission." @default.
- W4386029116 created "2023-08-22" @default.
- W4386029116 creator A5008996351 @default.
- W4386029116 creator A5023334482 @default.
- W4386029116 creator A5025269962 @default.
- W4386029116 creator A5029807994 @default.
- W4386029116 creator A5040769435 @default.
- W4386029116 creator A5051300642 @default.
- W4386029116 creator A5058675695 @default.
- W4386029116 creator A5084414371 @default.
- W4386029116 creator A5092668407 @default.
- W4386029116 date "2023-08-20" @default.
- W4386029116 modified "2023-10-09" @default.
- W4386029116 title "Comparison of stochastic and deterministic models for<i>gambiense</i>sleeping sickness at different spatial scales: A health area analysis in the DRC" @default.
- W4386029116 cites W1501586228 @default.
- W4386029116 cites W1835810119 @default.
- W4386029116 cites W1999721844 @default.
- W4386029116 cites W2005852753 @default.
- W4386029116 cites W2010931722 @default.
- W4386029116 cites W2030387285 @default.
- W4386029116 cites W2077487223 @default.
- W4386029116 cites W2093651415 @default.
- W4386029116 cites W2103178642 @default.
- W4386029116 cites W2113106274 @default.
- W4386029116 cites W2127063113 @default.
- W4386029116 cites W2130363011 @default.
- W4386029116 cites W2132192754 @default.
- W4386029116 cites W2133970549 @default.
- W4386029116 cites W2140107100 @default.
- W4386029116 cites W2148534890 @default.
- W4386029116 cites W2155412601 @default.
- W4386029116 cites W2156160213 @default.
- W4386029116 cites W2167190032 @default.
- W4386029116 cites W2167573438 @default.
- W4386029116 cites W2559900979 @default.
- W4386029116 cites W2564156041 @default.
- W4386029116 cites W2568743130 @default.
- W4386029116 cites W2591856223 @default.
- W4386029116 cites W2594579511 @default.
- W4386029116 cites W2742116434 @default.
- W4386029116 cites W2785091500 @default.
- W4386029116 cites W2947109873 @default.
- W4386029116 cites W2978408855 @default.
- W4386029116 cites W2981455864 @default.
- W4386029116 cites W2994661878 @default.
- W4386029116 cites W2997558377 @default.
- W4386029116 cites W3000953500 @default.
- W4386029116 cites W3092828384 @default.
- W4386029116 cites W3112719856 @default.
- W4386029116 cites W3121247387 @default.
- W4386029116 cites W3131456049 @default.
- W4386029116 cites W3166017487 @default.
- W4386029116 cites W3200190042 @default.
- W4386029116 cites W3213669456 @default.
- W4386029116 cites W4205265340 @default.
- W4386029116 cites W4210387299 @default.
- W4386029116 cites W4214512543 @default.
- W4386029116 cites W4226400050 @default.
- W4386029116 cites W4241341709 @default.
- W4386029116 cites W4285019262 @default.
- W4386029116 cites W4321606007 @default.
- W4386029116 doi "https://doi.org/10.1101/2023.08.17.23294225" @default.
- W4386029116 hasPublicationYear "2023" @default.
- W4386029116 type Work @default.
- W4386029116 citedByCount "0" @default.
- W4386029116 crossrefType "posted-content" @default.
- W4386029116 hasAuthorship W4386029116A5008996351 @default.
- W4386029116 hasAuthorship W4386029116A5023334482 @default.
- W4386029116 hasAuthorship W4386029116A5025269962 @default.
- W4386029116 hasAuthorship W4386029116A5029807994 @default.
- W4386029116 hasAuthorship W4386029116A5040769435 @default.
- W4386029116 hasAuthorship W4386029116A5051300642 @default.
- W4386029116 hasAuthorship W4386029116A5058675695 @default.
- W4386029116 hasAuthorship W4386029116A5084414371 @default.
- W4386029116 hasAuthorship W4386029116A5092668407 @default.
- W4386029116 hasBestOaLocation W43860291161 @default.
- W4386029116 hasConcept C105795698 @default.
- W4386029116 hasConcept C111350023 @default.
- W4386029116 hasConcept C118552586 @default.
- W4386029116 hasConcept C127491075 @default.
- W4386029116 hasConcept C149782125 @default.
- W4386029116 hasConcept C157286648 @default.
- W4386029116 hasConcept C19499675 @default.
- W4386029116 hasConcept C205649164 @default.
- W4386029116 hasConcept C2780665704 @default.
- W4386029116 hasConcept C33923547 @default.
- W4386029116 hasConcept C52421305 @default.
- W4386029116 hasConcept C71924100 @default.
- W4386029116 hasConcept C98763669 @default.
- W4386029116 hasConceptScore W4386029116C105795698 @default.
- W4386029116 hasConceptScore W4386029116C111350023 @default.
- W4386029116 hasConceptScore W4386029116C118552586 @default.
- W4386029116 hasConceptScore W4386029116C127491075 @default.
- W4386029116 hasConceptScore W4386029116C149782125 @default.
- W4386029116 hasConceptScore W4386029116C157286648 @default.
- W4386029116 hasConceptScore W4386029116C19499675 @default.
- W4386029116 hasConceptScore W4386029116C205649164 @default.
- W4386029116 hasConceptScore W4386029116C2780665704 @default.
- W4386029116 hasConceptScore W4386029116C33923547 @default.
- W4386029116 hasConceptScore W4386029116C52421305 @default.