Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386029697> ?p ?o ?g. }
- W4386029697 endingPage "724" @default.
- W4386029697 startingPage "703" @default.
- W4386029697 abstract "AbstractWe employ extreme value theory to identify stock price crashes, featuring low-probability events that produce large, idiosyncratic negative outliers in the conditional distribution. Traditional methods employ approximations under Gaussian assumptions and central moments. This is inherently imprecise and susceptible to misspecifications, especially for tail events. We instead propose new definitions and measures for crash risk based on conditional extremal quantiles (CEQ) of idiosyncratic stock returns. CEQ provide information on quantile-specific impact of covariates, and shed light on prior empirical puzzles and shortcomings in identifying crashes. Additionally, to capture the magnitude of crashes, we provide an expected shortfall analysis of the losses due to crash. Our findings have important implications for a burgeoning literature in financial economics that relies on traditional approximations.KEYWORDS: Extremal quantilesextreme value theoryquantile regressionstock price crashesJEL Classification: C14D81G11G12G32 AcknowledgmentsThe views expressed in this article are those of the authors and not necessarily reflect those of the Bank of Greece or the Eurosystem.Notes1 Some notable examples, inter alia, are: Chen et al. (Citation2001); Jin and Myers (Citation2006); Hutton et al. (Citation2009); Kim et al. (Citation2011); Callen and Fang (Citation2015); Andreou et al. (Citation2016); Kim et al. (Citation2016); Andreou et al. (Citation2017); Chang et al. (Citation2017); Ertugrul et al. (Citation2017); Cheng et al. (Citation2020); Li and Zeng (Citation2019).2 The nonclustering condition is of the Meyer (Citation1973) type and states that the probability of two extreme events co-occurring at nearby dates is much lower than the probability of just one extreme event. This assumption is convenient because it leads to limit distributions of extremal quantile regression estimators as if independent sampling had taken place. The plausibility of the nonclustering assumption is an empirical matter.3 Due to data limitation issues, we cannot perform our analysis on a per-firm basis. However, we performed also the analysis by (a) pooling per-year-industry and (b) pooling data per-year and then take the average over all years. We find that our findings are not sensitive to the way we split the data. All robustness checks are available upon request.4 Excess return is typically computed as deviation from a given risk free return. Here, idiosyncratic weekly return is computed as deviation from a statistically determined, stable, weekly market, and industry return. An interpretation is that we are removing a linear projection expected value of market and/or industry returns. This is a partialling out of returns that accounts for the expected value of market and common industry factors, before a quantile regression is conducted on other conditioning covariates. An alternative approach would be a single step estimation of quantiles, controlling for quantile effects of market, and industry weekly returns. Another approach may first estimate the conditional distribution of weekly returns, controlling for all desired covariates simultaneously, by a method such as distribution regressions.5 Examples of such papers include Hutton et al. (Citation2009); Kim et al. (Citation2011); Callen and Fang (Citation2015); Andreou et al. (Citation2016); Kim et al. (Citation2016); Andreou et al. (Citation2017); Chang et al. (Citation2017); Ertugrul et al. (Citation2017); Kim et al. (Citation2019); Li and Zeng (Citation2019); Andreou et al. (Citation2022).6 The quantile regressions are based on the 52 idiosyncratic weekly returns pooled over all stocks within a given industry, in a given year. We have repeated all computations using only the industry returns (no market returns) in the index model; the results are quite robust.7 We estimate the conditional extreme quantile following in step the code as per the Koenker (Citation2016) quantreg package, as well as the code from Chernozhukov and Du (Citation2006) and Chernozhukov and Fernández-Val (2011).8 All robustness checks are available upon request.9 Note that we have checked whether excluding firm-years with a stock price less than $1 at the end of the fiscal year artificially creates the upward-trending frequency of crashes observed and the number of crashes is fairly steady.10 https://www.bis.org/publ/bcbs265.pdf11 For the needs of this analysis, following Andreou et al. (Citation2022), we impose additional filtering rules, particularly, keeping common stocks (i.e., share codes 10 and 11) traded in NYSE, AMEX, and NASDAQ, excluding firm-years with a stock price less than $1 at the end of the fiscal year and having fewer than 26 weeks of stock returns in a fiscal year, and dropping firm-year observations without available information in Compustat for computing the financial variables.12 The nonclustering condition is of the Meyer (Citation1973) type and states that the probability of two extreme events co-occurring at nearby dates is much lower than the probability of just one extreme event. For example, it assumes that a large market crash is not likely to be immediately followed by another large crash.Additional informationFundingESADE Business School, Ramon LLull University, Avenida de Torreblanca 59, 08172, Sant Cugat, Barcelona, Spain; e-mail: carlo.sala@esade.edu. Financial support from the AGAUR - SGR 2017-640 grant and from the Spanish Ministry of Science and Innovation - PID2019-1064656GBI00/AEI/10.13039/501100011033 are gratefully acknowledged." @default.
- W4386029697 created "2023-08-22" @default.
- W4386029697 creator A5018520973 @default.
- W4386029697 creator A5041657820 @default.
- W4386029697 creator A5057041385 @default.
- W4386029697 creator A5077468833 @default.
- W4386029697 date "2023-08-20" @default.
- W4386029697 modified "2023-10-09" @default.
- W4386029697 title "Extremal quantiles and stock price crashes" @default.
- W4386029697 cites W1487159385 @default.
- W4386029697 cites W1966268097 @default.
- W4386029697 cites W1966586504 @default.
- W4386029697 cites W1976162410 @default.
- W4386029697 cites W2019291268 @default.
- W4386029697 cites W2020255743 @default.
- W4386029697 cites W2023143454 @default.
- W4386029697 cites W2047134779 @default.
- W4386029697 cites W2075965721 @default.
- W4386029697 cites W2077071171 @default.
- W4386029697 cites W2096887247 @default.
- W4386029697 cites W2124601071 @default.
- W4386029697 cites W2128034370 @default.
- W4386029697 cites W2131331361 @default.
- W4386029697 cites W2133641513 @default.
- W4386029697 cites W2324099123 @default.
- W4386029697 cites W2518913136 @default.
- W4386029697 cites W2519143511 @default.
- W4386029697 cites W2588694271 @default.
- W4386029697 cites W2735800220 @default.
- W4386029697 cites W2784312476 @default.
- W4386029697 cites W285781483 @default.
- W4386029697 cites W2952580930 @default.
- W4386029697 cites W3010702858 @default.
- W4386029697 cites W3022848728 @default.
- W4386029697 cites W3104967305 @default.
- W4386029697 cites W3121128063 @default.
- W4386029697 cites W3121143499 @default.
- W4386029697 cites W3121228995 @default.
- W4386029697 cites W3121248895 @default.
- W4386029697 cites W3121748932 @default.
- W4386029697 cites W3121969765 @default.
- W4386029697 cites W3122255869 @default.
- W4386029697 cites W3122260466 @default.
- W4386029697 cites W3122526219 @default.
- W4386029697 cites W3122804190 @default.
- W4386029697 cites W3122843332 @default.
- W4386029697 cites W3123186395 @default.
- W4386029697 cites W3123445444 @default.
- W4386029697 cites W3123960106 @default.
- W4386029697 cites W3124049593 @default.
- W4386029697 cites W3124520998 @default.
- W4386029697 cites W3125034439 @default.
- W4386029697 cites W3125351122 @default.
- W4386029697 cites W3125510660 @default.
- W4386029697 cites W3125677029 @default.
- W4386029697 cites W3125995070 @default.
- W4386029697 cites W3126072850 @default.
- W4386029697 cites W3217620534 @default.
- W4386029697 cites W4236286411 @default.
- W4386029697 cites W4241653265 @default.
- W4386029697 cites W4246717377 @default.
- W4386029697 cites W4313430727 @default.
- W4386029697 doi "https://doi.org/10.1080/07474938.2023.2241223" @default.
- W4386029697 hasPublicationYear "2023" @default.
- W4386029697 type Work @default.
- W4386029697 citedByCount "0" @default.
- W4386029697 crossrefType "journal-article" @default.
- W4386029697 hasAuthorship W4386029697A5018520973 @default.
- W4386029697 hasAuthorship W4386029697A5041657820 @default.
- W4386029697 hasAuthorship W4386029697A5057041385 @default.
- W4386029697 hasAuthorship W4386029697A5077468833 @default.
- W4386029697 hasConcept C105795698 @default.
- W4386029697 hasConcept C118671147 @default.
- W4386029697 hasConcept C147581598 @default.
- W4386029697 hasConcept C149782125 @default.
- W4386029697 hasConcept C162324750 @default.
- W4386029697 hasConcept C166957645 @default.
- W4386029697 hasConcept C183469790 @default.
- W4386029697 hasConcept C199360897 @default.
- W4386029697 hasConcept C204036174 @default.
- W4386029697 hasConcept C205649164 @default.
- W4386029697 hasConcept C33923547 @default.
- W4386029697 hasConcept C41008148 @default.
- W4386029697 hasConcept C79337645 @default.
- W4386029697 hasConceptScore W4386029697C105795698 @default.
- W4386029697 hasConceptScore W4386029697C118671147 @default.
- W4386029697 hasConceptScore W4386029697C147581598 @default.
- W4386029697 hasConceptScore W4386029697C149782125 @default.
- W4386029697 hasConceptScore W4386029697C162324750 @default.
- W4386029697 hasConceptScore W4386029697C166957645 @default.
- W4386029697 hasConceptScore W4386029697C183469790 @default.
- W4386029697 hasConceptScore W4386029697C199360897 @default.
- W4386029697 hasConceptScore W4386029697C204036174 @default.
- W4386029697 hasConceptScore W4386029697C205649164 @default.
- W4386029697 hasConceptScore W4386029697C33923547 @default.
- W4386029697 hasConceptScore W4386029697C41008148 @default.
- W4386029697 hasConceptScore W4386029697C79337645 @default.
- W4386029697 hasFunder F4320322930 @default.