Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386041427> ?p ?o ?g. }
- W4386041427 endingPage "110703" @default.
- W4386041427 startingPage "110703" @default.
- W4386041427 abstract "Structures such as bridges, offshore platforms, wind power facilities, and drilling rigs generate a corresponding periodic structural response under cyclic loads such as solar radiation, tides and sea-land breeze. Data recovery and forecasting are major parts of the work to ensure structural safety using periodic structural health monitoring data. In this context, a combined method of autoregressive (AR) model and matrix factorization (MF) method is presented to reaching the tasks of data imputation and prediction. The combined method with a graph-based temporal regularizer can well capture the cyclic characteristics and random character. The verification of the method is conducted using an in-situ temperature monitoring dataset of a high-speed railway steel bridge. The application of the method for both data recovery and forecasting with structured missing entries is carried out, which indicates the combined method owns outstanding performance in accurately recover missing entries and making predictions. In the last part, the analysis of rank order and length of time lag is made to show its influence on imputation accuracy." @default.
- W4386041427 created "2023-08-22" @default.
- W4386041427 creator A5009440633 @default.
- W4386041427 creator A5069279516 @default.
- W4386041427 date "2023-11-01" @default.
- W4386041427 modified "2023-09-25" @default.
- W4386041427 title "A combined method of autoregressive model and matrix factorization for recovery and forecasting of cyclic structural health monitoring data" @default.
- W4386041427 cites W1500188831 @default.
- W4386041427 cites W1560047381 @default.
- W4386041427 cites W1892268707 @default.
- W4386041427 cites W2024165284 @default.
- W4386041427 cites W2082740732 @default.
- W4386041427 cites W2097114344 @default.
- W4386041427 cites W2108433027 @default.
- W4386041427 cites W2117368434 @default.
- W4386041427 cites W2123758710 @default.
- W4386041427 cites W2133762042 @default.
- W4386041427 cites W2182552006 @default.
- W4386041427 cites W2290298709 @default.
- W4386041427 cites W2403489609 @default.
- W4386041427 cites W2461817915 @default.
- W4386041427 cites W2465297350 @default.
- W4386041427 cites W2508782677 @default.
- W4386041427 cites W2564554783 @default.
- W4386041427 cites W2598386631 @default.
- W4386041427 cites W2753726896 @default.
- W4386041427 cites W2895346482 @default.
- W4386041427 cites W2902048196 @default.
- W4386041427 cites W2904480413 @default.
- W4386041427 cites W2944787403 @default.
- W4386041427 cites W2946752227 @default.
- W4386041427 cites W2963968876 @default.
- W4386041427 cites W2992361469 @default.
- W4386041427 cites W3006443064 @default.
- W4386041427 cites W3022953487 @default.
- W4386041427 cites W3035355910 @default.
- W4386041427 cites W3037134996 @default.
- W4386041427 cites W3037761057 @default.
- W4386041427 cites W3038719270 @default.
- W4386041427 cites W3039209232 @default.
- W4386041427 cites W3043944983 @default.
- W4386041427 cites W3124399172 @default.
- W4386041427 cites W3133747210 @default.
- W4386041427 cites W3142457350 @default.
- W4386041427 cites W3165847323 @default.
- W4386041427 cites W3191641444 @default.
- W4386041427 cites W4205316932 @default.
- W4386041427 cites W4224318902 @default.
- W4386041427 cites W4281752329 @default.
- W4386041427 cites W4313680291 @default.
- W4386041427 doi "https://doi.org/10.1016/j.ymssp.2023.110703" @default.
- W4386041427 hasPublicationYear "2023" @default.
- W4386041427 type Work @default.
- W4386041427 citedByCount "0" @default.
- W4386041427 crossrefType "journal-article" @default.
- W4386041427 hasAuthorship W4386041427A5009440633 @default.
- W4386041427 hasAuthorship W4386041427A5069279516 @default.
- W4386041427 hasConcept C105795698 @default.
- W4386041427 hasConcept C11413529 @default.
- W4386041427 hasConcept C119857082 @default.
- W4386041427 hasConcept C121332964 @default.
- W4386041427 hasConcept C124101348 @default.
- W4386041427 hasConcept C127413603 @default.
- W4386041427 hasConcept C156273044 @default.
- W4386041427 hasConcept C158693339 @default.
- W4386041427 hasConcept C159877910 @default.
- W4386041427 hasConcept C2776247918 @default.
- W4386041427 hasConcept C31462909 @default.
- W4386041427 hasConcept C33923547 @default.
- W4386041427 hasConcept C41008148 @default.
- W4386041427 hasConcept C42355184 @default.
- W4386041427 hasConcept C58041806 @default.
- W4386041427 hasConcept C62520636 @default.
- W4386041427 hasConcept C66938386 @default.
- W4386041427 hasConcept C9357733 @default.
- W4386041427 hasConceptScore W4386041427C105795698 @default.
- W4386041427 hasConceptScore W4386041427C11413529 @default.
- W4386041427 hasConceptScore W4386041427C119857082 @default.
- W4386041427 hasConceptScore W4386041427C121332964 @default.
- W4386041427 hasConceptScore W4386041427C124101348 @default.
- W4386041427 hasConceptScore W4386041427C127413603 @default.
- W4386041427 hasConceptScore W4386041427C156273044 @default.
- W4386041427 hasConceptScore W4386041427C158693339 @default.
- W4386041427 hasConceptScore W4386041427C159877910 @default.
- W4386041427 hasConceptScore W4386041427C2776247918 @default.
- W4386041427 hasConceptScore W4386041427C31462909 @default.
- W4386041427 hasConceptScore W4386041427C33923547 @default.
- W4386041427 hasConceptScore W4386041427C41008148 @default.
- W4386041427 hasConceptScore W4386041427C42355184 @default.
- W4386041427 hasConceptScore W4386041427C58041806 @default.
- W4386041427 hasConceptScore W4386041427C62520636 @default.
- W4386041427 hasConceptScore W4386041427C66938386 @default.
- W4386041427 hasConceptScore W4386041427C9357733 @default.
- W4386041427 hasLocation W43860414271 @default.
- W4386041427 hasOpenAccess W4386041427 @default.
- W4386041427 hasPrimaryLocation W43860414271 @default.
- W4386041427 hasRelatedWork W1554932412 @default.
- W4386041427 hasRelatedWork W1973721774 @default.