Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386041497> ?p ?o ?g. }
- W4386041497 endingPage "105372" @default.
- W4386041497 startingPage "105372" @default.
- W4386041497 abstract "The estimation of lower-limb joint moments during locomotive activities can provide valuable feedback in joint-injury risk evaluation and clinical diagnosis. The use of inertial measurement units (IMUs) in joint moment estimation has drawn considerable attention. Minimizing the number of IMUs deployed on the lower-limb and simplifying the application procedure have long been the pressing problem to be solved during the accurate estimation of multiple joint moments in multiple scenarios. In the present study, the performance of seven different deep-learning models, including the proposed attention-based conventional neural network-bidirectional long short-term memory model and six previous-published typical deep-learning models, were compared in predicting the sagittal plane hip, knee, and ankle joint moments during the most representative locomotive activities. A public dataset was employed to train and validate these models. Seven configurations of IMUs, including different placement and number of IMUs, were evaluated to explore the influence of IMU setup on the performance of the proposed model. Of all seven deep-learning models, best performance was achieved using the proposed model. Pearson correlation coefficient derived from the proposed model using a single IMU attached on the shank, foot, and thigh reached up to 0.85, 0.83 and 0.78, respectively. Shank is the optimal location for attaching a single IMU for the moment prediction of all three joints, while extra IMUs attached elsewhere failed to derive pronounced benefit for improving the estimation accuracy. Thus, even using a single shank-worn IMU, the proposed model is still capable of accurately estimating the joint moments of lower-limbs." @default.
- W4386041497 created "2023-08-22" @default.
- W4386041497 creator A5003550256 @default.
- W4386041497 creator A5008568732 @default.
- W4386041497 creator A5017017051 @default.
- W4386041497 creator A5019969551 @default.
- W4386041497 creator A5068997395 @default.
- W4386041497 creator A5071892663 @default.
- W4386041497 date "2023-09-01" @default.
- W4386041497 modified "2023-10-15" @default.
- W4386041497 title "Deep-learning model for the prediction of lower-limb joint moments using single inertial measurement unit during different locomotive activities" @default.
- W4386041497 cites W2067683752 @default.
- W4386041497 cites W2130281033 @default.
- W4386041497 cites W2135270981 @default.
- W4386041497 cites W2612974132 @default.
- W4386041497 cites W2771645351 @default.
- W4386041497 cites W2886982273 @default.
- W4386041497 cites W2912589397 @default.
- W4386041497 cites W2969586733 @default.
- W4386041497 cites W2979307224 @default.
- W4386041497 cites W2981607055 @default.
- W4386041497 cites W2993122943 @default.
- W4386041497 cites W2995691779 @default.
- W4386041497 cites W3002403519 @default.
- W4386041497 cites W3005130785 @default.
- W4386041497 cites W3007075806 @default.
- W4386041497 cites W3016900421 @default.
- W4386041497 cites W3037654363 @default.
- W4386041497 cites W3097457439 @default.
- W4386041497 cites W3115127978 @default.
- W4386041497 cites W3128764679 @default.
- W4386041497 cites W3130807160 @default.
- W4386041497 cites W3146366485 @default.
- W4386041497 cites W3170721375 @default.
- W4386041497 cites W3175504516 @default.
- W4386041497 cites W3175585004 @default.
- W4386041497 cites W3180757470 @default.
- W4386041497 cites W3187576114 @default.
- W4386041497 cites W4206978223 @default.
- W4386041497 cites W4213432423 @default.
- W4386041497 cites W4225979779 @default.
- W4386041497 cites W4226023735 @default.
- W4386041497 cites W4292970538 @default.
- W4386041497 cites W4306382028 @default.
- W4386041497 cites W4311091141 @default.
- W4386041497 cites W4312214306 @default.
- W4386041497 cites W4367174256 @default.
- W4386041497 doi "https://doi.org/10.1016/j.bspc.2023.105372" @default.
- W4386041497 hasPublicationYear "2023" @default.
- W4386041497 type Work @default.
- W4386041497 citedByCount "0" @default.
- W4386041497 crossrefType "journal-article" @default.
- W4386041497 hasAuthorship W4386041497A5003550256 @default.
- W4386041497 hasAuthorship W4386041497A5008568732 @default.
- W4386041497 hasAuthorship W4386041497A5017017051 @default.
- W4386041497 hasAuthorship W4386041497A5019969551 @default.
- W4386041497 hasAuthorship W4386041497A5068997395 @default.
- W4386041497 hasAuthorship W4386041497A5071892663 @default.
- W4386041497 hasConcept C108583219 @default.
- W4386041497 hasConcept C121332964 @default.
- W4386041497 hasConcept C126838900 @default.
- W4386041497 hasConcept C127413603 @default.
- W4386041497 hasConcept C141071460 @default.
- W4386041497 hasConcept C142724271 @default.
- W4386041497 hasConcept C151233233 @default.
- W4386041497 hasConcept C154945302 @default.
- W4386041497 hasConcept C170154142 @default.
- W4386041497 hasConcept C178910020 @default.
- W4386041497 hasConcept C179254644 @default.
- W4386041497 hasConcept C18555067 @default.
- W4386041497 hasConcept C2778640784 @default.
- W4386041497 hasConcept C2908736133 @default.
- W4386041497 hasConcept C41008148 @default.
- W4386041497 hasConcept C44154836 @default.
- W4386041497 hasConcept C62520636 @default.
- W4386041497 hasConcept C71924100 @default.
- W4386041497 hasConcept C74650414 @default.
- W4386041497 hasConcept C79061980 @default.
- W4386041497 hasConceptScore W4386041497C108583219 @default.
- W4386041497 hasConceptScore W4386041497C121332964 @default.
- W4386041497 hasConceptScore W4386041497C126838900 @default.
- W4386041497 hasConceptScore W4386041497C127413603 @default.
- W4386041497 hasConceptScore W4386041497C141071460 @default.
- W4386041497 hasConceptScore W4386041497C142724271 @default.
- W4386041497 hasConceptScore W4386041497C151233233 @default.
- W4386041497 hasConceptScore W4386041497C154945302 @default.
- W4386041497 hasConceptScore W4386041497C170154142 @default.
- W4386041497 hasConceptScore W4386041497C178910020 @default.
- W4386041497 hasConceptScore W4386041497C179254644 @default.
- W4386041497 hasConceptScore W4386041497C18555067 @default.
- W4386041497 hasConceptScore W4386041497C2778640784 @default.
- W4386041497 hasConceptScore W4386041497C2908736133 @default.
- W4386041497 hasConceptScore W4386041497C41008148 @default.
- W4386041497 hasConceptScore W4386041497C44154836 @default.
- W4386041497 hasConceptScore W4386041497C62520636 @default.
- W4386041497 hasConceptScore W4386041497C71924100 @default.
- W4386041497 hasConceptScore W4386041497C74650414 @default.
- W4386041497 hasConceptScore W4386041497C79061980 @default.