Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386041549> ?p ?o ?g. }
- W4386041549 endingPage "111" @default.
- W4386041549 startingPage "99" @default.
- W4386041549 abstract "Air pollution is a severe environmental problem in urban areas. Accurate air quality prediction can help governments and individuals make proper decisions to cope with potential air pollution. As a classic time series forecasting model, the AutoRegressive Integrated Moving Average (ARIMA) has been widely adopted in air quality prediction. However, because of the volatility of air quality and the lack of additional context information, i.e., the spatial relationships among monitor stations, traditional ARIMA models suffer from unstable prediction performance. Though some deep networks can achieve higher accuracy, a mass of training data, heavy computing, and time cost are required. In this paper, we propose a hybrid model to simultaneously predict seven air pollution indicators from multiple monitoring stations. The proposed model consists of three components: (1) an extended ARIMA to predict matrix series of multiple air quality indicators from several adjacent monitoring stations; (2) the Empirical Mode Decomposition (EMD) to decompose the air quality time series data into multiple smooth sub-series; and (3) the truncated Singular Value Decomposition (SVD) to compress and denoise the expanded matrix. Experimental results on the public dataset show that our proposed model outperforms the state-of-art air quality forecasting models in both accuracy and time cost." @default.
- W4386041549 created "2023-08-22" @default.
- W4386041549 creator A5016730781 @default.
- W4386041549 creator A5033079705 @default.
- W4386041549 creator A5044297480 @default.
- W4386041549 creator A5057564678 @default.
- W4386041549 creator A5086829017 @default.
- W4386041549 date "2024-02-01" @default.
- W4386041549 modified "2023-09-26" @default.
- W4386041549 title "A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition" @default.
- W4386041549 cites W2007221293 @default.
- W4386041549 cites W2219956463 @default.
- W4386041549 cites W2590890587 @default.
- W4386041549 cites W2619148070 @default.
- W4386041549 cites W2695427614 @default.
- W4386041549 cites W2743680082 @default.
- W4386041549 cites W2811058829 @default.
- W4386041549 cites W2898924913 @default.
- W4386041549 cites W2914487400 @default.
- W4386041549 cites W2967744086 @default.
- W4386041549 cites W2979469095 @default.
- W4386041549 cites W2981704113 @default.
- W4386041549 cites W2990955039 @default.
- W4386041549 cites W3005177200 @default.
- W4386041549 cites W3082845510 @default.
- W4386041549 cites W3101047706 @default.
- W4386041549 cites W3104564914 @default.
- W4386041549 cites W3119665391 @default.
- W4386041549 cites W3126486982 @default.
- W4386041549 cites W3129060894 @default.
- W4386041549 cites W3132919111 @default.
- W4386041549 cites W3134566149 @default.
- W4386041549 cites W3161314187 @default.
- W4386041549 cites W3162644333 @default.
- W4386041549 cites W3165735421 @default.
- W4386041549 cites W3195226391 @default.
- W4386041549 cites W3202316976 @default.
- W4386041549 cites W3202603867 @default.
- W4386041549 cites W3203535865 @default.
- W4386041549 cites W3214899504 @default.
- W4386041549 cites W4200144682 @default.
- W4386041549 cites W4205526478 @default.
- W4386041549 cites W4206450891 @default.
- W4386041549 cites W4220951298 @default.
- W4386041549 cites W4225586447 @default.
- W4386041549 cites W4225606092 @default.
- W4386041549 cites W4226248369 @default.
- W4386041549 cites W4226313405 @default.
- W4386041549 cites W4235253654 @default.
- W4386041549 cites W4243302596 @default.
- W4386041549 cites W4254535393 @default.
- W4386041549 cites W4281660018 @default.
- W4386041549 doi "https://doi.org/10.26599/tst.2022.9010060" @default.
- W4386041549 hasPublicationYear "2024" @default.
- W4386041549 type Work @default.
- W4386041549 citedByCount "0" @default.
- W4386041549 crossrefType "journal-article" @default.
- W4386041549 hasAuthorship W4386041549A5016730781 @default.
- W4386041549 hasAuthorship W4386041549A5033079705 @default.
- W4386041549 hasAuthorship W4386041549A5044297480 @default.
- W4386041549 hasAuthorship W4386041549A5057564678 @default.
- W4386041549 hasAuthorship W4386041549A5086829017 @default.
- W4386041549 hasBestOaLocation W43860415491 @default.
- W4386041549 hasConcept C106131492 @default.
- W4386041549 hasConcept C11413529 @default.
- W4386041549 hasConcept C119857082 @default.
- W4386041549 hasConcept C124101348 @default.
- W4386041549 hasConcept C126314574 @default.
- W4386041549 hasConcept C149782125 @default.
- W4386041549 hasConcept C151406439 @default.
- W4386041549 hasConcept C153294291 @default.
- W4386041549 hasConcept C159877910 @default.
- W4386041549 hasConcept C166957645 @default.
- W4386041549 hasConcept C178790620 @default.
- W4386041549 hasConcept C185592680 @default.
- W4386041549 hasConcept C205649164 @default.
- W4386041549 hasConcept C22789450 @default.
- W4386041549 hasConcept C24338571 @default.
- W4386041549 hasConcept C25570617 @default.
- W4386041549 hasConcept C2779343474 @default.
- W4386041549 hasConcept C31972630 @default.
- W4386041549 hasConcept C33923547 @default.
- W4386041549 hasConcept C41008148 @default.
- W4386041549 hasConcept C559116025 @default.
- W4386041549 hasConcept C91602232 @default.
- W4386041549 hasConceptScore W4386041549C106131492 @default.
- W4386041549 hasConceptScore W4386041549C11413529 @default.
- W4386041549 hasConceptScore W4386041549C119857082 @default.
- W4386041549 hasConceptScore W4386041549C124101348 @default.
- W4386041549 hasConceptScore W4386041549C126314574 @default.
- W4386041549 hasConceptScore W4386041549C149782125 @default.
- W4386041549 hasConceptScore W4386041549C151406439 @default.
- W4386041549 hasConceptScore W4386041549C153294291 @default.
- W4386041549 hasConceptScore W4386041549C159877910 @default.
- W4386041549 hasConceptScore W4386041549C166957645 @default.
- W4386041549 hasConceptScore W4386041549C178790620 @default.
- W4386041549 hasConceptScore W4386041549C185592680 @default.
- W4386041549 hasConceptScore W4386041549C205649164 @default.