Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386045866> ?p ?o ?g. }
- W4386045866 endingPage "725" @default.
- W4386045866 startingPage "725" @default.
- W4386045866 abstract "Importance Whether protein risk scores derived from a single plasma sample could be useful for risk assessment for atherosclerotic cardiovascular disease (ASCVD), in conjunction with clinical risk factors and polygenic risk scores, is uncertain. Objective To develop protein risk scores for ASCVD risk prediction and compare them to clinical risk factors and polygenic risk scores in primary and secondary event populations. Design, Setting, and Participants The primary analysis was a retrospective study of primary events among 13 540 individuals in Iceland (aged 40-75 years) with proteomics data and no history of major ASCVD events at recruitment (study duration, August 23, 2000 until October 26, 2006; follow-up through 2018). We also analyzed a secondary event population from a randomized, double-blind lipid-lowering clinical trial (2013-2016), consisting of individuals with stable ASCVD receiving statin therapy and for whom proteomic data were available for 6791 individuals. Exposures Protein risk scores (based on 4963 plasma protein levels and developed in a training set in the primary event population); polygenic risk scores for coronary artery disease and stroke; and clinical risk factors that included age, sex, statin use, hypertension treatment, type 2 diabetes, body mass index, and smoking status at the time of plasma sampling. Main Outcomes and Measures Outcomes were composites of myocardial infarction, stroke, and coronary heart disease death or cardiovascular death. Performance was evaluated using Cox survival models and measures of discrimination and reclassification that accounted for the competing risk of non-ASCVD death. Results In the primary event population test set (4018 individuals [59.0% women]; 465 events; median follow-up, 15.8 years), the protein risk score had a hazard ratio (HR) of 1.93 per SD (95% CI, 1.75 to 2.13). Addition of protein risk score and polygenic risk scores significantly increased the C index when added to a clinical risk factor model (C index change, 0.022 [95% CI, 0.007 to 0.038]). Addition of the protein risk score alone to a clinical risk factor model also led to a significantly increased C index (difference, 0.014 [95% CI, 0.002 to 0.028]). Among White individuals in the secondary event population (6307 participants; 432 events; median follow-up, 2.2 years), the protein risk score had an HR of 1.62 per SD (95% CI, 1.48 to 1.79) and significantly increased C index when added to a clinical risk factor model (C index change, 0.026 [95% CI, 0.011 to 0.042]). The protein risk score was significantly associated with major adverse cardiovascular events among individuals of African and Asian ancestries in the secondary event population. Conclusions and Relevance A protein risk score was significantly associated with ASCVD events in primary and secondary event populations. When added to clinical risk factors, the protein risk score and polygenic risk score both provided statistically significant but modest improvement in discrimination." @default.
- W4386045866 created "2023-08-23" @default.
- W4386045866 creator A5010114482 @default.
- W4386045866 creator A5012694067 @default.
- W4386045866 creator A5018239255 @default.
- W4386045866 creator A5018640108 @default.
- W4386045866 creator A5019005913 @default.
- W4386045866 creator A5021362010 @default.
- W4386045866 creator A5022986058 @default.
- W4386045866 creator A5027650519 @default.
- W4386045866 creator A5027707263 @default.
- W4386045866 creator A5027825887 @default.
- W4386045866 creator A5030057930 @default.
- W4386045866 creator A5032281288 @default.
- W4386045866 creator A5036276739 @default.
- W4386045866 creator A5042302428 @default.
- W4386045866 creator A5044778501 @default.
- W4386045866 creator A5045665978 @default.
- W4386045866 creator A5048586856 @default.
- W4386045866 creator A5051619491 @default.
- W4386045866 creator A5053082085 @default.
- W4386045866 creator A5053659969 @default.
- W4386045866 creator A5053984080 @default.
- W4386045866 creator A5058503662 @default.
- W4386045866 creator A5060569928 @default.
- W4386045866 creator A5063438106 @default.
- W4386045866 creator A5065151039 @default.
- W4386045866 creator A5066037133 @default.
- W4386045866 creator A5069107150 @default.
- W4386045866 creator A5069292094 @default.
- W4386045866 creator A5071943400 @default.
- W4386045866 creator A5074394409 @default.
- W4386045866 creator A5082800110 @default.
- W4386045866 creator A5084707737 @default.
- W4386045866 creator A5084730049 @default.
- W4386045866 creator A5084841926 @default.
- W4386045866 creator A5090755824 @default.
- W4386045866 date "2023-08-22" @default.
- W4386045866 modified "2023-09-26" @default.
- W4386045866 title "Evaluation of Large-Scale Proteomics for Prediction of Cardiovascular Events" @default.
- W4386045866 cites W2010084870 @default.
- W4386045866 cites W2066356596 @default.
- W4386045866 cites W2106421416 @default.
- W4386045866 cites W2107165713 @default.
- W4386045866 cites W2112316706 @default.
- W4386045866 cites W2137249087 @default.
- W4386045866 cites W2145051815 @default.
- W4386045866 cites W2149199519 @default.
- W4386045866 cites W2155069705 @default.
- W4386045866 cites W2165884492 @default.
- W4386045866 cites W2168536722 @default.
- W4386045866 cites W2210694332 @default.
- W4386045866 cites W2238851414 @default.
- W4386045866 cites W2462540433 @default.
- W4386045866 cites W2575032714 @default.
- W4386045866 cites W2596179513 @default.
- W4386045866 cites W2794819865 @default.
- W4386045866 cites W2883061610 @default.
- W4386045866 cites W2895366584 @default.
- W4386045866 cites W2900130109 @default.
- W4386045866 cites W2932671560 @default.
- W4386045866 cites W2953804067 @default.
- W4386045866 cites W2990851413 @default.
- W4386045866 cites W3001764054 @default.
- W4386045866 cites W3007698544 @default.
- W4386045866 cites W3008788084 @default.
- W4386045866 cites W3066114734 @default.
- W4386045866 cites W3112624009 @default.
- W4386045866 cites W3169847773 @default.
- W4386045866 cites W3183857127 @default.
- W4386045866 cites W3209856620 @default.
- W4386045866 cites W3215894083 @default.
- W4386045866 cites W3217680058 @default.
- W4386045866 cites W4210443892 @default.
- W4386045866 cites W4210537932 @default.
- W4386045866 cites W4223581642 @default.
- W4386045866 cites W4240485424 @default.
- W4386045866 doi "https://doi.org/10.1001/jama.2023.13258" @default.
- W4386045866 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37606673" @default.
- W4386045866 hasPublicationYear "2023" @default.
- W4386045866 type Work @default.
- W4386045866 citedByCount "0" @default.
- W4386045866 crossrefType "journal-article" @default.
- W4386045866 hasAuthorship W4386045866A5010114482 @default.
- W4386045866 hasAuthorship W4386045866A5012694067 @default.
- W4386045866 hasAuthorship W4386045866A5018239255 @default.
- W4386045866 hasAuthorship W4386045866A5018640108 @default.
- W4386045866 hasAuthorship W4386045866A5019005913 @default.
- W4386045866 hasAuthorship W4386045866A5021362010 @default.
- W4386045866 hasAuthorship W4386045866A5022986058 @default.
- W4386045866 hasAuthorship W4386045866A5027650519 @default.
- W4386045866 hasAuthorship W4386045866A5027707263 @default.
- W4386045866 hasAuthorship W4386045866A5027825887 @default.
- W4386045866 hasAuthorship W4386045866A5030057930 @default.
- W4386045866 hasAuthorship W4386045866A5032281288 @default.
- W4386045866 hasAuthorship W4386045866A5036276739 @default.
- W4386045866 hasAuthorship W4386045866A5042302428 @default.
- W4386045866 hasAuthorship W4386045866A5044778501 @default.