Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386046932> ?p ?o ?g. }
- W4386046932 abstract "Clinical guidelines for the management of individuals with type 2 diabetes mellitus endorse the systematic assessment of atherosclerotic cardiovascular disease risk for early interventions. In this study, we aimed to develop machine learning models to predict 3-year atherosclerotic cardiovascular disease risk in Chinese type 2 diabetes mellitus patients.Clinical records of 4,722 individuals with type 2 diabetes mellitus admitted to 94 hospitals were used. The features included demographic information, disease histories, laboratory tests and physical examinations. Logistic regression, support vector machine, gradient boosting decision tree, random forest and adaptive boosting were applied for model construction. The performance of these models was evaluated using the area under the receiver operating characteristic curve. Additionally, we applied SHapley Additive exPlanation values to explain the prediction model.All five models achieved good performance in both internal and external test sets (area under the receiver operating characteristic curve >0.8). Random forest showed the highest discrimination ability, with sensitivity and specificity being 0.838 and 0.814, respectively. The SHapley Additive exPlanation analyses showed that previous history of diabetic peripheral vascular disease, older populations and longer diabetes duration were the three most influential predictors.The prediction models offer opportunities to personalize treatment and maximize the benefits of these medical interventions." @default.
- W4386046932 created "2023-08-23" @default.
- W4386046932 creator A5008962800 @default.
- W4386046932 creator A5018284294 @default.
- W4386046932 creator A5024578256 @default.
- W4386046932 creator A5045197394 @default.
- W4386046932 creator A5047873063 @default.
- W4386046932 creator A5048778597 @default.
- W4386046932 creator A5055495624 @default.
- W4386046932 creator A5061925043 @default.
- W4386046932 creator A5066041641 @default.
- W4386046932 creator A5071824771 @default.
- W4386046932 creator A5082581059 @default.
- W4386046932 date "2023-08-22" @default.
- W4386046932 modified "2023-09-26" @default.
- W4386046932 title "Machine learning for the prediction of atherosclerotic cardiovascular disease during 3‐year follow up in Chinese type 2 diabetes mellitus patients" @default.
- W4386046932 cites W1678356000 @default.
- W4386046932 cites W1761502526 @default.
- W4386046932 cites W1809577636 @default.
- W4386046932 cites W1863878198 @default.
- W4386046932 cites W1988790447 @default.
- W4386046932 cites W1993185870 @default.
- W4386046932 cites W2015185375 @default.
- W4386046932 cites W2020915011 @default.
- W4386046932 cites W2023329893 @default.
- W4386046932 cites W2080906527 @default.
- W4386046932 cites W2106665921 @default.
- W4386046932 cites W2170888045 @default.
- W4386046932 cites W2498119267 @default.
- W4386046932 cites W2551615700 @default.
- W4386046932 cites W2603645732 @default.
- W4386046932 cites W2752422532 @default.
- W4386046932 cites W2799589892 @default.
- W4386046932 cites W2909864871 @default.
- W4386046932 cites W2911964244 @default.
- W4386046932 cites W2943491685 @default.
- W4386046932 cites W2947016149 @default.
- W4386046932 cites W3012687466 @default.
- W4386046932 cites W3093540699 @default.
- W4386046932 cites W3098809754 @default.
- W4386046932 cites W3108194527 @default.
- W4386046932 cites W3110283397 @default.
- W4386046932 cites W3113706262 @default.
- W4386046932 cites W3167375140 @default.
- W4386046932 cites W3170220376 @default.
- W4386046932 cites W3183402545 @default.
- W4386046932 cites W4225129458 @default.
- W4386046932 cites W4225399996 @default.
- W4386046932 cites W4238251256 @default.
- W4386046932 cites W4324030899 @default.
- W4386046932 cites W4362519866 @default.
- W4386046932 doi "https://doi.org/10.1111/jdi.14069" @default.
- W4386046932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37605871" @default.
- W4386046932 hasPublicationYear "2023" @default.
- W4386046932 type Work @default.
- W4386046932 citedByCount "0" @default.
- W4386046932 crossrefType "journal-article" @default.
- W4386046932 hasAuthorship W4386046932A5008962800 @default.
- W4386046932 hasAuthorship W4386046932A5018284294 @default.
- W4386046932 hasAuthorship W4386046932A5024578256 @default.
- W4386046932 hasAuthorship W4386046932A5045197394 @default.
- W4386046932 hasAuthorship W4386046932A5047873063 @default.
- W4386046932 hasAuthorship W4386046932A5048778597 @default.
- W4386046932 hasAuthorship W4386046932A5055495624 @default.
- W4386046932 hasAuthorship W4386046932A5061925043 @default.
- W4386046932 hasAuthorship W4386046932A5066041641 @default.
- W4386046932 hasAuthorship W4386046932A5071824771 @default.
- W4386046932 hasAuthorship W4386046932A5082581059 @default.
- W4386046932 hasBestOaLocation W43860469321 @default.
- W4386046932 hasConcept C118552586 @default.
- W4386046932 hasConcept C119857082 @default.
- W4386046932 hasConcept C126322002 @default.
- W4386046932 hasConcept C134018914 @default.
- W4386046932 hasConcept C151956035 @default.
- W4386046932 hasConcept C154945302 @default.
- W4386046932 hasConcept C169258074 @default.
- W4386046932 hasConcept C195910791 @default.
- W4386046932 hasConcept C27415008 @default.
- W4386046932 hasConcept C2777180221 @default.
- W4386046932 hasConcept C2779134260 @default.
- W4386046932 hasConcept C2910068830 @default.
- W4386046932 hasConcept C41008148 @default.
- W4386046932 hasConcept C45804977 @default.
- W4386046932 hasConcept C555293320 @default.
- W4386046932 hasConcept C58471807 @default.
- W4386046932 hasConcept C70153297 @default.
- W4386046932 hasConcept C71924100 @default.
- W4386046932 hasConcept C84525736 @default.
- W4386046932 hasConceptScore W4386046932C118552586 @default.
- W4386046932 hasConceptScore W4386046932C119857082 @default.
- W4386046932 hasConceptScore W4386046932C126322002 @default.
- W4386046932 hasConceptScore W4386046932C134018914 @default.
- W4386046932 hasConceptScore W4386046932C151956035 @default.
- W4386046932 hasConceptScore W4386046932C154945302 @default.
- W4386046932 hasConceptScore W4386046932C169258074 @default.
- W4386046932 hasConceptScore W4386046932C195910791 @default.
- W4386046932 hasConceptScore W4386046932C27415008 @default.
- W4386046932 hasConceptScore W4386046932C2777180221 @default.
- W4386046932 hasConceptScore W4386046932C2779134260 @default.
- W4386046932 hasConceptScore W4386046932C2910068830 @default.