Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386048488> ?p ?o ?g. }
- W4386048488 endingPage "9216" @default.
- W4386048488 startingPage "9191" @default.
- W4386048488 abstract "Abstract. Because of their computational expense, models with comprehensive tropospheric chemistry have typically been run with prescribed sea surface temperatures (SSTs), which greatly limits the model's ability to generate climate responses to atmospheric forcings. In the past few years, however, several fully coupled models with comprehensive tropospheric chemistry have been developed. For example, the Community Earth System Model version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component (CESM2-WACCM6) has implemented fully interactive tropospheric chemistry with 231 chemical species as well as a fully coupled ocean. Earlier versions of this model used a “SOAG scheme” that prescribes bulk emission of a single gas-phase precursor to secondary organic aerosols (SOAs). In contrast, CESM2-WACCM6 simulates the chemistry of a comprehensive range of volatile organic compounds (VOCs) responsible for tropospheric aerosol formation. Such a model offers an opportunity to examine the full climate effects of comprehensive tropospheric chemistry. To examine these effects, 211-year preindustrial control simulations were performed using the following two configurations: (1) the standard CESM2-WACCM6 configuration with interactive chemistry over the whole atmosphere (WACtl) and (2) a simplified CESM2-WACCM6 configuration using a SOAG scheme in the troposphere and interactive chemistry in the middle atmosphere (MACtl). The middle-atmospheric chemistry is the same in both configurations, and only the tropospheric chemistry differs. Differences between WACtl and MACtl were analyzed for various fields. Regional differences in annual mean surface temperature range from −4 to 4 K. In the zonal average, there is widespread tropospheric cooling in the extratropics. Longwave forcers are shown to be unlikely drivers of this cooling, and possible shortwave forcers are explored. Evidence is presented that the climate response is primarily due to increased sulfate aerosols in the extratropical stratosphere and cloud feedbacks. As found in earlier studies, enhanced internal mixing with SOAs in WACtl causes widespread reductions of black carbon (BC) and primary organic matter (POM), which are not directly influenced by VOC chemistry. These BC and POM reductions might further contribute to cooling in the Northern Hemisphere. The extratropical tropospheric cooling results in dynamical changes, such as equatorward shifts of the midlatitude jets, which in turn drive extratropical changes in clouds and precipitation. In the tropical upper troposphere, cloud-driven increases in shortwave heating appear to weaken and expand the Hadley circulation, which in turn drives changes in tropical and subtropical precipitation. Some of the climate responses are quantitatively large enough in some regions to motivate future investigations of VOC chemistry's possible influences on anthropogenic climate change." @default.
- W4386048488 created "2023-08-23" @default.
- W4386048488 creator A5064879984 @default.
- W4386048488 creator A5081400430 @default.
- W4386048488 date "2023-08-22" @default.
- W4386048488 modified "2023-09-30" @default.
- W4386048488 title "How does tropospheric VOC chemistry affect climate? An investigation of preindustrial control simulations using the Community Earth System Model version 2" @default.
- W4386048488 cites W1806024449 @default.
- W4386048488 cites W1973233492 @default.
- W4386048488 cites W1977962914 @default.
- W4386048488 cites W1990687171 @default.
- W4386048488 cites W1992702561 @default.
- W4386048488 cites W1997339222 @default.
- W4386048488 cites W2007606522 @default.
- W4386048488 cites W2010341850 @default.
- W4386048488 cites W2012918890 @default.
- W4386048488 cites W2018680235 @default.
- W4386048488 cites W2020690537 @default.
- W4386048488 cites W2021137726 @default.
- W4386048488 cites W2025151763 @default.
- W4386048488 cites W2027412043 @default.
- W4386048488 cites W2034434715 @default.
- W4386048488 cites W2036016937 @default.
- W4386048488 cites W2044160173 @default.
- W4386048488 cites W2049584232 @default.
- W4386048488 cites W2052748907 @default.
- W4386048488 cites W2057841843 @default.
- W4386048488 cites W2070886035 @default.
- W4386048488 cites W2088283807 @default.
- W4386048488 cites W2096195151 @default.
- W4386048488 cites W2098729143 @default.
- W4386048488 cites W2108165704 @default.
- W4386048488 cites W2117429861 @default.
- W4386048488 cites W2117934260 @default.
- W4386048488 cites W2124731444 @default.
- W4386048488 cites W2130871986 @default.
- W4386048488 cites W2133484165 @default.
- W4386048488 cites W2136704660 @default.
- W4386048488 cites W2141637972 @default.
- W4386048488 cites W2143422504 @default.
- W4386048488 cites W2144994625 @default.
- W4386048488 cites W2145730702 @default.
- W4386048488 cites W2151181273 @default.
- W4386048488 cites W2152662303 @default.
- W4386048488 cites W2152891546 @default.
- W4386048488 cites W2154568974 @default.
- W4386048488 cites W2157168938 @default.
- W4386048488 cites W2158063935 @default.
- W4386048488 cites W2165361395 @default.
- W4386048488 cites W2176609576 @default.
- W4386048488 cites W2177291244 @default.
- W4386048488 cites W2177814458 @default.
- W4386048488 cites W2193503481 @default.
- W4386048488 cites W2258247617 @default.
- W4386048488 cites W2270778661 @default.
- W4386048488 cites W2297329683 @default.
- W4386048488 cites W2460445755 @default.
- W4386048488 cites W2475473035 @default.
- W4386048488 cites W2531205202 @default.
- W4386048488 cites W2619280447 @default.
- W4386048488 cites W2754728072 @default.
- W4386048488 cites W2770467500 @default.
- W4386048488 cites W2794678663 @default.
- W4386048488 cites W2884933885 @default.
- W4386048488 cites W2898435040 @default.
- W4386048488 cites W2904519966 @default.
- W4386048488 cites W2938746795 @default.
- W4386048488 cites W2953301534 @default.
- W4386048488 cites W2955601895 @default.
- W4386048488 cites W2979696800 @default.
- W4386048488 cites W2981104727 @default.
- W4386048488 cites W2994253361 @default.
- W4386048488 cites W2995367207 @default.
- W4386048488 cites W2998885490 @default.
- W4386048488 cites W3005468410 @default.
- W4386048488 cites W3010199226 @default.
- W4386048488 cites W3013886998 @default.
- W4386048488 cites W3013995257 @default.
- W4386048488 cites W3048060975 @default.
- W4386048488 cites W3048932873 @default.
- W4386048488 cites W3107709348 @default.
- W4386048488 cites W3124153000 @default.
- W4386048488 cites W3179055806 @default.
- W4386048488 cites W4220900026 @default.
- W4386048488 cites W4225472537 @default.
- W4386048488 cites W4307462083 @default.
- W4386048488 cites W4382358979 @default.
- W4386048488 doi "https://doi.org/10.5194/acp-23-9191-2023" @default.
- W4386048488 hasPublicationYear "2023" @default.
- W4386048488 type Work @default.
- W4386048488 citedByCount "0" @default.
- W4386048488 crossrefType "journal-article" @default.
- W4386048488 hasAuthorship W4386048488A5064879984 @default.
- W4386048488 hasAuthorship W4386048488A5081400430 @default.
- W4386048488 hasBestOaLocation W43860484881 @default.
- W4386048488 hasConcept C111368507 @default.
- W4386048488 hasConcept C127313418 @default.
- W4386048488 hasConcept C132651083 @default.