Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386050425> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W4386050425 endingPage "112" @default.
- W4386050425 startingPage "71" @default.
- W4386050425 abstract "It is known that the $$L^p$$ Dirichlet Problem for constant coefficient second-order systems satisfying the Legendre-Hadamard (strong) ellipticity condition is well posed in the upper half-space. We have already seen in Chapter that this may not be the case in the class of weakly elliptic scalar operators in the complex plane. As we shall see in this chapter, counterexamples exist for weak elliptic systems in all space dimensions. In fact, the failure of the corresponding $$L^p$$ Dirichlet Problems to be well posed is at a fundamental level, in the sense that as we shall see momentarily, there exist weakly elliptic systems in $${mathbb {R}}^n$$ with $$nge 2$$ for which the $$L^p$$ Dirichlet Problem is not even Fredholm solvable. The manner in which this ties up with our earlier work in Chapter 1 is that we shall look for such a pathological weakly elliptic system in the class of those which fail to possess a distinguished coefficient tensor." @default.
- W4386050425 created "2023-08-23" @default.
- W4386050425 creator A5004818206 @default.
- W4386050425 creator A5053496960 @default.
- W4386050425 creator A5059362185 @default.
- W4386050425 date "2023-01-01" @default.
- W4386050425 modified "2023-09-25" @default.
- W4386050425 title "Failure of Fredholm Solvability for Weakly Elliptic Systems" @default.
- W4386050425 doi "https://doi.org/10.1007/978-3-031-31561-9_2" @default.
- W4386050425 hasPublicationYear "2023" @default.
- W4386050425 type Work @default.
- W4386050425 citedByCount "0" @default.
- W4386050425 crossrefType "book-chapter" @default.
- W4386050425 hasAuthorship W4386050425A5004818206 @default.
- W4386050425 hasAuthorship W4386050425A5053496960 @default.
- W4386050425 hasAuthorship W4386050425A5059362185 @default.
- W4386050425 hasConcept C134306372 @default.
- W4386050425 hasConcept C169214877 @default.
- W4386050425 hasConcept C182310444 @default.
- W4386050425 hasConcept C202444582 @default.
- W4386050425 hasConcept C2779560616 @default.
- W4386050425 hasConcept C33923547 @default.
- W4386050425 hasConceptScore W4386050425C134306372 @default.
- W4386050425 hasConceptScore W4386050425C169214877 @default.
- W4386050425 hasConceptScore W4386050425C182310444 @default.
- W4386050425 hasConceptScore W4386050425C202444582 @default.
- W4386050425 hasConceptScore W4386050425C2779560616 @default.
- W4386050425 hasConceptScore W4386050425C33923547 @default.
- W4386050425 hasLocation W43860504251 @default.
- W4386050425 hasOpenAccess W4386050425 @default.
- W4386050425 hasPrimaryLocation W43860504251 @default.
- W4386050425 hasRelatedWork W1663670175 @default.
- W4386050425 hasRelatedWork W1969910392 @default.
- W4386050425 hasRelatedWork W2049810254 @default.
- W4386050425 hasRelatedWork W2094715773 @default.
- W4386050425 hasRelatedWork W2141853718 @default.
- W4386050425 hasRelatedWork W2157076589 @default.
- W4386050425 hasRelatedWork W217400287 @default.
- W4386050425 hasRelatedWork W2787708715 @default.
- W4386050425 hasRelatedWork W3015266405 @default.
- W4386050425 hasRelatedWork W3043663456 @default.
- W4386050425 isParatext "false" @default.
- W4386050425 isRetracted "false" @default.
- W4386050425 workType "book-chapter" @default.