Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386054069> ?p ?o ?g. }
- W4386054069 endingPage "093007" @default.
- W4386054069 startingPage "093007" @default.
- W4386054069 abstract "Abstract Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development." @default.
- W4386054069 created "2023-08-23" @default.
- W4386054069 creator A5020960173 @default.
- W4386054069 creator A5021809579 @default.
- W4386054069 creator A5036767358 @default.
- W4386054069 creator A5047221142 @default.
- W4386054069 creator A5091144208 @default.
- W4386054069 date "2023-09-01" @default.
- W4386054069 modified "2023-10-16" @default.
- W4386054069 title "Accuracy evaluation of different machine learning force field features" @default.
- W4386054069 cites W1981368803 @default.
- W4386054069 cites W1986075748 @default.
- W4386054069 cites W2025444507 @default.
- W4386054069 cites W2029413789 @default.
- W4386054069 cites W2040182267 @default.
- W4386054069 cites W2080635178 @default.
- W4386054069 cites W2083415705 @default.
- W4386054069 cites W2147421370 @default.
- W4386054069 cites W2153882824 @default.
- W4386054069 cites W2197007850 @default.
- W4386054069 cites W2585152223 @default.
- W4386054069 cites W26088913 @default.
- W4386054069 cites W2734920787 @default.
- W4386054069 cites W2742127985 @default.
- W4386054069 cites W2753962198 @default.
- W4386054069 cites W2778051509 @default.
- W4386054069 cites W2792351009 @default.
- W4386054069 cites W2910857709 @default.
- W4386054069 cites W2911490414 @default.
- W4386054069 cites W2991242245 @default.
- W4386054069 cites W3012140320 @default.
- W4386054069 cites W3030664746 @default.
- W4386054069 cites W3098290058 @default.
- W4386054069 cites W3102033477 @default.
- W4386054069 cites W3116563477 @default.
- W4386054069 cites W3118299338 @default.
- W4386054069 cites W3133931590 @default.
- W4386054069 cites W3138658169 @default.
- W4386054069 cites W3176386153 @default.
- W4386054069 cites W3208707586 @default.
- W4386054069 cites W3213083931 @default.
- W4386054069 cites W4225405705 @default.
- W4386054069 cites W4319162181 @default.
- W4386054069 doi "https://doi.org/10.1088/1367-2630/acf2bb" @default.
- W4386054069 hasPublicationYear "2023" @default.
- W4386054069 type Work @default.
- W4386054069 citedByCount "0" @default.
- W4386054069 crossrefType "journal-article" @default.
- W4386054069 hasAuthorship W4386054069A5020960173 @default.
- W4386054069 hasAuthorship W4386054069A5021809579 @default.
- W4386054069 hasAuthorship W4386054069A5036767358 @default.
- W4386054069 hasAuthorship W4386054069A5047221142 @default.
- W4386054069 hasAuthorship W4386054069A5091144208 @default.
- W4386054069 hasBestOaLocation W43860540691 @default.
- W4386054069 hasConcept C105795698 @default.
- W4386054069 hasConcept C121332964 @default.
- W4386054069 hasConcept C134306372 @default.
- W4386054069 hasConcept C138885662 @default.
- W4386054069 hasConcept C139945424 @default.
- W4386054069 hasConcept C153180895 @default.
- W4386054069 hasConcept C154945302 @default.
- W4386054069 hasConcept C163716315 @default.
- W4386054069 hasConcept C21424316 @default.
- W4386054069 hasConcept C2776401178 @default.
- W4386054069 hasConcept C33923547 @default.
- W4386054069 hasConcept C41008148 @default.
- W4386054069 hasConcept C41895202 @default.
- W4386054069 hasConcept C62520636 @default.
- W4386054069 hasConceptScore W4386054069C105795698 @default.
- W4386054069 hasConceptScore W4386054069C121332964 @default.
- W4386054069 hasConceptScore W4386054069C134306372 @default.
- W4386054069 hasConceptScore W4386054069C138885662 @default.
- W4386054069 hasConceptScore W4386054069C139945424 @default.
- W4386054069 hasConceptScore W4386054069C153180895 @default.
- W4386054069 hasConceptScore W4386054069C154945302 @default.
- W4386054069 hasConceptScore W4386054069C163716315 @default.
- W4386054069 hasConceptScore W4386054069C21424316 @default.
- W4386054069 hasConceptScore W4386054069C2776401178 @default.
- W4386054069 hasConceptScore W4386054069C33923547 @default.
- W4386054069 hasConceptScore W4386054069C41008148 @default.
- W4386054069 hasConceptScore W4386054069C41895202 @default.
- W4386054069 hasConceptScore W4386054069C62520636 @default.
- W4386054069 hasFunder F4320321001 @default.
- W4386054069 hasIssue "9" @default.
- W4386054069 hasLocation W43860540691 @default.
- W4386054069 hasOpenAccess W4386054069 @default.
- W4386054069 hasPrimaryLocation W43860540691 @default.
- W4386054069 hasRelatedWork W2033914206 @default.
- W4386054069 hasRelatedWork W2042327336 @default.
- W4386054069 hasRelatedWork W2046077695 @default.
- W4386054069 hasRelatedWork W2146076056 @default.
- W4386054069 hasRelatedWork W2163831990 @default.
- W4386054069 hasRelatedWork W2378160586 @default.
- W4386054069 hasRelatedWork W2382607599 @default.
- W4386054069 hasRelatedWork W2546942002 @default.
- W4386054069 hasRelatedWork W2970216048 @default.
- W4386054069 hasRelatedWork W3003836766 @default.
- W4386054069 hasVolume "25" @default.