Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386064185> ?p ?o ?g. }
- W4386064185 endingPage "103070" @default.
- W4386064185 startingPage "103070" @default.
- W4386064185 abstract "Demands to decarbonize electricity production and improve energy security will continue to drive wind energy development. A Logistic Regression-Cellular Automata (LRCA) model is presented here to project timing and location of this future development and thus aid efforts to meet energy demands. The model's logistic regression equation is trained and tested using aggregated data from key predictors to correctly classify hexagonal grid cells covering the Conterminous United States (CONUS) as currently containing wind farms. The cellular automata component iteratively applies this equation, plus constraints and neighborhood effects, to project grid cells suited for future wind energy development out to the year 2050, with the model's sensitivity to constraint, neighborhood, and scenario definitions also examined. Projected wind farms are concentrated in high wind speed regions currently populated by wind farms (e.g., Central Plains, Midwest). State-level scale projections reveal local influences on future development, such as critical species habitats and infrastructure. Projected wind farm locations are trustworthy since the model correctly classifies over 85% of current grid cell states at CONUS and state-level scales. Current clusters of wind energy development across the CONUS will continue to expand in these projections, with these clusters growing earlier and faster given a larger neighborhood size and looser constraints. Model projections are less sensitive to scenario definitions, with modifications to predictors affecting when existing wind farm clusters expand rather than where new clusters form. Replacement of the wind farm location dataset would allow this model to project other decentralized land use changes, particularly solar energy development." @default.
- W4386064185 created "2023-08-23" @default.
- W4386064185 creator A5018968479 @default.
- W4386064185 creator A5048918362 @default.
- W4386064185 date "2023-10-01" @default.
- W4386064185 modified "2023-09-29" @default.
- W4386064185 title "Using logistic regression-cellular automata to project future sites for commercial wind energy development" @default.
- W4386064185 cites W1973926236 @default.
- W4386064185 cites W1982314817 @default.
- W4386064185 cites W1988658554 @default.
- W4386064185 cites W1988822947 @default.
- W4386064185 cites W1992377083 @default.
- W4386064185 cites W1992595136 @default.
- W4386064185 cites W1992673415 @default.
- W4386064185 cites W2000730663 @default.
- W4386064185 cites W2010524426 @default.
- W4386064185 cites W2016205270 @default.
- W4386064185 cites W2016817275 @default.
- W4386064185 cites W2032309879 @default.
- W4386064185 cites W2035672394 @default.
- W4386064185 cites W2044617923 @default.
- W4386064185 cites W2052615516 @default.
- W4386064185 cites W2068540643 @default.
- W4386064185 cites W2070602616 @default.
- W4386064185 cites W2070739968 @default.
- W4386064185 cites W2076812056 @default.
- W4386064185 cites W2084411125 @default.
- W4386064185 cites W2085593420 @default.
- W4386064185 cites W2091295796 @default.
- W4386064185 cites W2093006518 @default.
- W4386064185 cites W2094245525 @default.
- W4386064185 cites W2103647733 @default.
- W4386064185 cites W2104896032 @default.
- W4386064185 cites W2112048775 @default.
- W4386064185 cites W2114009539 @default.
- W4386064185 cites W2120000166 @default.
- W4386064185 cites W2127059652 @default.
- W4386064185 cites W2131586477 @default.
- W4386064185 cites W2134748367 @default.
- W4386064185 cites W2136050606 @default.
- W4386064185 cites W2137398591 @default.
- W4386064185 cites W2140468511 @default.
- W4386064185 cites W2149970084 @default.
- W4386064185 cites W2156484217 @default.
- W4386064185 cites W2157937931 @default.
- W4386064185 cites W2192545109 @default.
- W4386064185 cites W2290380888 @default.
- W4386064185 cites W2465509009 @default.
- W4386064185 cites W2496025094 @default.
- W4386064185 cites W2551937259 @default.
- W4386064185 cites W2586078646 @default.
- W4386064185 cites W2603506078 @default.
- W4386064185 cites W2741850062 @default.
- W4386064185 cites W2752485563 @default.
- W4386064185 cites W2763123824 @default.
- W4386064185 cites W2763623309 @default.
- W4386064185 cites W2789428318 @default.
- W4386064185 cites W2796378684 @default.
- W4386064185 cites W2805077439 @default.
- W4386064185 cites W2883905899 @default.
- W4386064185 cites W2889389781 @default.
- W4386064185 cites W2895817010 @default.
- W4386064185 cites W2905198848 @default.
- W4386064185 cites W2917749783 @default.
- W4386064185 cites W2919701695 @default.
- W4386064185 cites W2922256384 @default.
- W4386064185 cites W2932004029 @default.
- W4386064185 cites W2973004779 @default.
- W4386064185 cites W2979802124 @default.
- W4386064185 cites W2981367440 @default.
- W4386064185 cites W3000298244 @default.
- W4386064185 cites W3001042167 @default.
- W4386064185 cites W3010089169 @default.
- W4386064185 cites W3012311764 @default.
- W4386064185 cites W3024018684 @default.
- W4386064185 cites W3040101977 @default.
- W4386064185 cites W3043611595 @default.
- W4386064185 cites W307485833 @default.
- W4386064185 cites W3080092419 @default.
- W4386064185 cites W3083755100 @default.
- W4386064185 cites W3093712771 @default.
- W4386064185 cites W3112258151 @default.
- W4386064185 cites W3115047337 @default.
- W4386064185 cites W3159219703 @default.
- W4386064185 cites W3160623547 @default.
- W4386064185 cites W3165210666 @default.
- W4386064185 cites W3183243181 @default.
- W4386064185 cites W3195554638 @default.
- W4386064185 cites W3201413894 @default.
- W4386064185 cites W3205218562 @default.
- W4386064185 cites W3211880259 @default.
- W4386064185 cites W4210794973 @default.
- W4386064185 cites W4282976866 @default.
- W4386064185 cites W4293799852 @default.
- W4386064185 cites W4367396235 @default.
- W4386064185 cites W4386951714 @default.
- W4386064185 doi "https://doi.org/10.1016/j.apgeog.2023.103070" @default.
- W4386064185 hasPublicationYear "2023" @default.