Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386065314> ?p ?o ?g. }
- W4386065314 endingPage "91132" @default.
- W4386065314 startingPage "91116" @default.
- W4386065314 abstract "Adversarial attacks have threatened the credibility of machine learning models and cast doubts over the integrity of data. The attacks have created much harm in the fields of computer vision, and natural language processing. In this paper, we focus on the adversarial attack, in particular the poisoning attack, against the network intrusion detection system (NIDS), which is often viewed as the first line of defense against cyber threats. We develop an Anomaly-based intrusion on IoT networks Generative Adversarial Network (AIGAN), which uses deep learning techniques to generate adversarial data and to conduct an anomaly attack on IoT networks. To evaluate the effectiveness of our generator, we measure the similarities between real and fake data using the Jaccard similarity index, in addition comparing the F1-scores from four generic algorithms: multilayer perception, logistic regression, decision tree, random forest. We contrast the performance of ten machine learning classifiers experimented on two real IoT datasets and their fake adversarial samples. Our work highlights a vulnerable side of NIDS created by machine learning when attacked with adversarial perturbation." @default.
- W4386065314 created "2023-08-23" @default.
- W4386065314 creator A5006191181 @default.
- W4386065314 creator A5060413968 @default.
- W4386065314 creator A5060588932 @default.
- W4386065314 creator A5070531407 @default.
- W4386065314 creator A5075206490 @default.
- W4386065314 creator A5078766422 @default.
- W4386065314 date "2023-01-01" @default.
- W4386065314 modified "2023-09-26" @default.
- W4386065314 title "Anomaly-Based Intrusion on IoT Networks Using AIGAN-a Generative Adversarial Network" @default.
- W4386065314 cites W1542601440 @default.
- W4386065314 cites W1566399673 @default.
- W4386065314 cites W2064955109 @default.
- W4386065314 cites W2152195021 @default.
- W4386065314 cites W2610321374 @default.
- W4386065314 cites W2780061022 @default.
- W4386065314 cites W2788102893 @default.
- W4386065314 cites W2896556344 @default.
- W4386065314 cites W2902758299 @default.
- W4386065314 cites W2906805076 @default.
- W4386065314 cites W2914570111 @default.
- W4386065314 cites W2962711307 @default.
- W4386065314 cites W2965102627 @default.
- W4386065314 cites W2965653989 @default.
- W4386065314 cites W2971480956 @default.
- W4386065314 cites W2982853004 @default.
- W4386065314 cites W2984271195 @default.
- W4386065314 cites W2991109336 @default.
- W4386065314 cites W3006997833 @default.
- W4386065314 cites W3007481080 @default.
- W4386065314 cites W3008365266 @default.
- W4386065314 cites W3019963807 @default.
- W4386065314 cites W3037857795 @default.
- W4386065314 cites W3082819946 @default.
- W4386065314 cites W3091379954 @default.
- W4386065314 cites W3104615765 @default.
- W4386065314 cites W3104691427 @default.
- W4386065314 cites W3111739957 @default.
- W4386065314 cites W3112739278 @default.
- W4386065314 cites W3127831386 @default.
- W4386065314 cites W3128027283 @default.
- W4386065314 cites W3132570160 @default.
- W4386065314 cites W3136173905 @default.
- W4386065314 cites W3153890562 @default.
- W4386065314 cites W3157331533 @default.
- W4386065314 cites W3160841033 @default.
- W4386065314 cites W3162244132 @default.
- W4386065314 cites W3171819295 @default.
- W4386065314 cites W3172173631 @default.
- W4386065314 cites W3177128792 @default.
- W4386065314 cites W3181520075 @default.
- W4386065314 cites W3184813631 @default.
- W4386065314 cites W3198511875 @default.
- W4386065314 cites W3201286448 @default.
- W4386065314 cites W3204715535 @default.
- W4386065314 cites W3205172848 @default.
- W4386065314 cites W3207267053 @default.
- W4386065314 cites W4210818611 @default.
- W4386065314 cites W4211092666 @default.
- W4386065314 cites W4220840380 @default.
- W4386065314 cites W4225383331 @default.
- W4386065314 cites W4225982742 @default.
- W4386065314 cites W4235705169 @default.
- W4386065314 cites W4285224425 @default.
- W4386065314 cites W4285600752 @default.
- W4386065314 cites W4312500461 @default.
- W4386065314 doi "https://doi.org/10.1109/access.2023.3307463" @default.
- W4386065314 hasPublicationYear "2023" @default.
- W4386065314 type Work @default.
- W4386065314 citedByCount "0" @default.
- W4386065314 crossrefType "journal-article" @default.
- W4386065314 hasAuthorship W4386065314A5006191181 @default.
- W4386065314 hasAuthorship W4386065314A5060413968 @default.
- W4386065314 hasAuthorship W4386065314A5060588932 @default.
- W4386065314 hasAuthorship W4386065314A5070531407 @default.
- W4386065314 hasAuthorship W4386065314A5075206490 @default.
- W4386065314 hasAuthorship W4386065314A5078766422 @default.
- W4386065314 hasBestOaLocation W43860653141 @default.
- W4386065314 hasConcept C108583219 @default.
- W4386065314 hasConcept C119857082 @default.
- W4386065314 hasConcept C124101348 @default.
- W4386065314 hasConcept C154945302 @default.
- W4386065314 hasConcept C2988773926 @default.
- W4386065314 hasConcept C37736160 @default.
- W4386065314 hasConcept C38652104 @default.
- W4386065314 hasConcept C41008148 @default.
- W4386065314 hasConcept C739882 @default.
- W4386065314 hasConceptScore W4386065314C108583219 @default.
- W4386065314 hasConceptScore W4386065314C119857082 @default.
- W4386065314 hasConceptScore W4386065314C124101348 @default.
- W4386065314 hasConceptScore W4386065314C154945302 @default.
- W4386065314 hasConceptScore W4386065314C2988773926 @default.
- W4386065314 hasConceptScore W4386065314C37736160 @default.
- W4386065314 hasConceptScore W4386065314C38652104 @default.
- W4386065314 hasConceptScore W4386065314C41008148 @default.
- W4386065314 hasConceptScore W4386065314C739882 @default.
- W4386065314 hasLocation W43860653141 @default.