Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386065610> ?p ?o ?g. }
- W4386065610 abstract "We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone which offers access to images, depth maps, and valid poses. Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps and refines camera poses guided by corresponding depth. Then, we adopt the neural implicit surface reconstruction method, which allows for high-quality mesh and develops a new training process for applying a regularization provided by classical multi-view stereo methods. Moreover, we apply a differentiable rendering to fine-tune incomplete texture maps and generate textures which are perceptually closer to the original scene. Our pipeline can be applied to any common objects in the real world without the need for either in-the-lab environments or accurate mask images. We demonstrate results of captured objects with complex shapes and validate our method numerically against existing 3D reconstruction and texture mapping methods." @default.
- W4386065610 created "2023-08-23" @default.
- W4386065610 creator A5011799109 @default.
- W4386065610 creator A5027028606 @default.
- W4386065610 creator A5028064484 @default.
- W4386065610 creator A5042883150 @default.
- W4386065610 creator A5055858656 @default.
- W4386065610 creator A5064035524 @default.
- W4386065610 creator A5083790514 @default.
- W4386065610 date "2023-06-01" @default.
- W4386065610 modified "2023-10-18" @default.
- W4386065610 title "TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using Differentiable Rendering" @default.
- W4386065610 cites W1975636777 @default.
- W4386065610 cites W1992642990 @default.
- W4386065610 cites W2005686772 @default.
- W4386065610 cites W2009422376 @default.
- W4386065610 cites W2085905957 @default.
- W4386065610 cites W2099940712 @default.
- W4386065610 cites W2121615318 @default.
- W4386065610 cites W2129201358 @default.
- W4386065610 cites W2132055825 @default.
- W4386065610 cites W2133665775 @default.
- W4386065610 cites W2151103935 @default.
- W4386065610 cites W2178629455 @default.
- W4386065610 cites W2235901111 @default.
- W4386065610 cites W2250172176 @default.
- W4386065610 cites W2336961836 @default.
- W4386065610 cites W2471962767 @default.
- W4386065610 cites W2737058939 @default.
- W4386065610 cites W2805202215 @default.
- W4386065610 cites W2942074357 @default.
- W4386065610 cites W3034275286 @default.
- W4386065610 cites W3034395814 @default.
- W4386065610 cites W3034968345 @default.
- W4386065610 cites W3035148830 @default.
- W4386065610 cites W3035358681 @default.
- W4386065610 cites W3035396254 @default.
- W4386065610 cites W3043075211 @default.
- W4386065610 cites W3081570422 @default.
- W4386065610 cites W3106672182 @default.
- W4386065610 cites W3107541696 @default.
- W4386065610 cites W3177583232 @default.
- W4386065610 cites W3180076784 @default.
- W4386065610 cites W3193602888 @default.
- W4386065610 cites W3202037070 @default.
- W4386065610 cites W3206049077 @default.
- W4386065610 cites W4200150166 @default.
- W4386065610 cites W4206760982 @default.
- W4386065610 cites W4221151978 @default.
- W4386065610 cites W4256017923 @default.
- W4386065610 cites W4281707540 @default.
- W4386065610 cites W4312598811 @default.
- W4386065610 cites W4313186498 @default.
- W4386065610 doi "https://doi.org/10.1109/cvpr52729.2023.01600" @default.
- W4386065610 hasPublicationYear "2023" @default.
- W4386065610 type Work @default.
- W4386065610 citedByCount "0" @default.
- W4386065610 crossrefType "proceedings-article" @default.
- W4386065610 hasAuthorship W4386065610A5011799109 @default.
- W4386065610 hasAuthorship W4386065610A5027028606 @default.
- W4386065610 hasAuthorship W4386065610A5028064484 @default.
- W4386065610 hasAuthorship W4386065610A5042883150 @default.
- W4386065610 hasAuthorship W4386065610A5055858656 @default.
- W4386065610 hasAuthorship W4386065610A5064035524 @default.
- W4386065610 hasAuthorship W4386065610A5083790514 @default.
- W4386065610 hasConcept C111919701 @default.
- W4386065610 hasConcept C121684516 @default.
- W4386065610 hasConcept C124504099 @default.
- W4386065610 hasConcept C134306372 @default.
- W4386065610 hasConcept C154945302 @default.
- W4386065610 hasConcept C186967261 @default.
- W4386065610 hasConcept C194401833 @default.
- W4386065610 hasConcept C199360897 @default.
- W4386065610 hasConcept C200585589 @default.
- W4386065610 hasConcept C202615002 @default.
- W4386065610 hasConcept C205711294 @default.
- W4386065610 hasConcept C207183524 @default.
- W4386065610 hasConcept C31487907 @default.
- W4386065610 hasConcept C31972630 @default.
- W4386065610 hasConcept C33923547 @default.
- W4386065610 hasConcept C41008148 @default.
- W4386065610 hasConcept C43521106 @default.
- W4386065610 hasConcept C63099799 @default.
- W4386065610 hasConcept C89600930 @default.
- W4386065610 hasConceptScore W4386065610C111919701 @default.
- W4386065610 hasConceptScore W4386065610C121684516 @default.
- W4386065610 hasConceptScore W4386065610C124504099 @default.
- W4386065610 hasConceptScore W4386065610C134306372 @default.
- W4386065610 hasConceptScore W4386065610C154945302 @default.
- W4386065610 hasConceptScore W4386065610C186967261 @default.
- W4386065610 hasConceptScore W4386065610C194401833 @default.
- W4386065610 hasConceptScore W4386065610C199360897 @default.
- W4386065610 hasConceptScore W4386065610C200585589 @default.
- W4386065610 hasConceptScore W4386065610C202615002 @default.
- W4386065610 hasConceptScore W4386065610C205711294 @default.
- W4386065610 hasConceptScore W4386065610C207183524 @default.
- W4386065610 hasConceptScore W4386065610C31487907 @default.
- W4386065610 hasConceptScore W4386065610C31972630 @default.
- W4386065610 hasConceptScore W4386065610C33923547 @default.
- W4386065610 hasConceptScore W4386065610C41008148 @default.