Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386066750> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4386066750 abstract "Fading channel classification is a useful function in the design of wireless communications because the knowledge of the channel state information can help the subsequent steps in the wireless communication processing including the information symbols extraction from the received signal. This paper proposes the application of the Walsh-Hadamard Transform (WHT) in combination with Convolutional Neural Network (CNN) for the problem of fading channel classification. WHT belongs to the generalized class of Fourier transforms and it is a non-sinusoidal, orthogonal transformation technique that decomposes a signal into a set of Walsh functions. WHT has been used in image processing but less in the wireless communication domain. CNN has been recently used in many wireless communications problems including fading channel classification, where it has shown to outperform ’shallow’ machine learning algorithms. This paper presents the novel combination of WHT with CNN for the problem of channel classification. The approach is applied to a data set of chirp signals derived from the technical specification of the radar altimeter, which is submitted to different fading conditions in a channel emulator implemented with FPGA in a radio frequency laboratory. The results show that the proposed approach is able to significantly outperform (especially in presence of noise) the application of CNN on the original time-based representation of the signal or the spectral domain representation based on the use of the Fourier transform and Wavelet transform." @default.
- W4386066750 created "2023-08-23" @default.
- W4386066750 creator A5006463391 @default.
- W4386066750 creator A5021380730 @default.
- W4386066750 creator A5067360205 @default.
- W4386066750 date "2023-07-25" @default.
- W4386066750 modified "2023-09-27" @default.
- W4386066750 title "Fading Channel Classification with Walsh-Hadamard Transform and Convolutional Neural Network" @default.
- W4386066750 cites W2042651764 @default.
- W4386066750 cites W2807927039 @default.
- W4386066750 cites W2922917519 @default.
- W4386066750 cites W2953473266 @default.
- W4386066750 cites W3012158304 @default.
- W4386066750 cites W3033032209 @default.
- W4386066750 cites W3035328184 @default.
- W4386066750 cites W3094858950 @default.
- W4386066750 cites W3106902366 @default.
- W4386066750 cites W4294647415 @default.
- W4386066750 cites W4312717387 @default.
- W4386066750 cites W4313389213 @default.
- W4386066750 doi "https://doi.org/10.1109/smartnets58706.2023.10215941" @default.
- W4386066750 hasPublicationYear "2023" @default.
- W4386066750 type Work @default.
- W4386066750 citedByCount "0" @default.
- W4386066750 crossrefType "proceedings-article" @default.
- W4386066750 hasAuthorship W4386066750A5006463391 @default.
- W4386066750 hasAuthorship W4386066750A5021380730 @default.
- W4386066750 hasAuthorship W4386066750A5067360205 @default.
- W4386066750 hasConcept C11413529 @default.
- W4386066750 hasConcept C127162648 @default.
- W4386066750 hasConcept C134306372 @default.
- W4386066750 hasConcept C148063708 @default.
- W4386066750 hasConcept C153180895 @default.
- W4386066750 hasConcept C154945302 @default.
- W4386066750 hasConcept C164319782 @default.
- W4386066750 hasConcept C33923547 @default.
- W4386066750 hasConcept C41008148 @default.
- W4386066750 hasConcept C555944384 @default.
- W4386066750 hasConcept C60292330 @default.
- W4386066750 hasConcept C76155785 @default.
- W4386066750 hasConcept C81363708 @default.
- W4386066750 hasConcept C81978471 @default.
- W4386066750 hasConceptScore W4386066750C11413529 @default.
- W4386066750 hasConceptScore W4386066750C127162648 @default.
- W4386066750 hasConceptScore W4386066750C134306372 @default.
- W4386066750 hasConceptScore W4386066750C148063708 @default.
- W4386066750 hasConceptScore W4386066750C153180895 @default.
- W4386066750 hasConceptScore W4386066750C154945302 @default.
- W4386066750 hasConceptScore W4386066750C164319782 @default.
- W4386066750 hasConceptScore W4386066750C33923547 @default.
- W4386066750 hasConceptScore W4386066750C41008148 @default.
- W4386066750 hasConceptScore W4386066750C555944384 @default.
- W4386066750 hasConceptScore W4386066750C60292330 @default.
- W4386066750 hasConceptScore W4386066750C76155785 @default.
- W4386066750 hasConceptScore W4386066750C81363708 @default.
- W4386066750 hasConceptScore W4386066750C81978471 @default.
- W4386066750 hasLocation W43860667501 @default.
- W4386066750 hasOpenAccess W4386066750 @default.
- W4386066750 hasPrimaryLocation W43860667501 @default.
- W4386066750 hasRelatedWork W2024821657 @default.
- W4386066750 hasRelatedWork W2100039774 @default.
- W4386066750 hasRelatedWork W2123252081 @default.
- W4386066750 hasRelatedWork W2351638733 @default.
- W4386066750 hasRelatedWork W2382017388 @default.
- W4386066750 hasRelatedWork W2767651786 @default.
- W4386066750 hasRelatedWork W2889222875 @default.
- W4386066750 hasRelatedWork W2920772412 @default.
- W4386066750 hasRelatedWork W3002441777 @default.
- W4386066750 hasRelatedWork W4289713079 @default.
- W4386066750 isParatext "false" @default.
- W4386066750 isRetracted "false" @default.
- W4386066750 workType "article" @default.