Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386069665> ?p ?o ?g. }
- W4386069665 endingPage "7318" @default.
- W4386069665 startingPage "7318" @default.
- W4386069665 abstract "Hospitals generate a significant amount of medical data every day, which constitute a very rich database for research. Today, this database is still not exploitable because to make its valorization possible, the images require an annotation which remains a costly and difficult task. Thus, the use of an unsupervised segmentation method could facilitate the process. In this article, we propose two approaches for the semantic segmentation of breast cancer histopathology images. On the one hand, an autoencoder architecture for unsupervised segmentation is proposed, and on the other hand, an improvement U-Net architecture for supervised segmentation is proposed. We evaluate these models on a public dataset of histological images of breast cancer. In addition, the performance of our segmentation methods is measured using several evaluation metrics such as accuracy, recall, precision and F1 score. The results are competitive with those of other modern methods." @default.
- W4386069665 created "2023-08-23" @default.
- W4386069665 creator A5037137798 @default.
- W4386069665 creator A5071910735 @default.
- W4386069665 creator A5072599767 @default.
- W4386069665 date "2023-08-22" @default.
- W4386069665 modified "2023-09-30" @default.
- W4386069665 title "Breast Cancer Histopathological Images Segmentation Using Deep Learning" @default.
- W4386069665 cites W1901129140 @default.
- W4386069665 cites W1903029394 @default.
- W4386069665 cites W2006937046 @default.
- W4386069665 cites W2053031424 @default.
- W4386069665 cites W2054151460 @default.
- W4386069665 cites W2103243046 @default.
- W4386069665 cites W2132031490 @default.
- W4386069665 cites W2248620004 @default.
- W4386069665 cites W2282915343 @default.
- W4386069665 cites W2408733084 @default.
- W4386069665 cites W2424807480 @default.
- W4386069665 cites W2521736072 @default.
- W4386069665 cites W2586619010 @default.
- W4386069665 cites W2604440528 @default.
- W4386069665 cites W2693096534 @default.
- W4386069665 cites W2773448137 @default.
- W4386069665 cites W2877381559 @default.
- W4386069665 cites W2885343725 @default.
- W4386069665 cites W2914010220 @default.
- W4386069665 cites W2922204263 @default.
- W4386069665 cites W2938476923 @default.
- W4386069665 cites W2942825528 @default.
- W4386069665 cites W2951250226 @default.
- W4386069665 cites W2962804068 @default.
- W4386069665 cites W2970303990 @default.
- W4386069665 cites W2980199518 @default.
- W4386069665 cites W2980471673 @default.
- W4386069665 cites W2982805640 @default.
- W4386069665 cites W3009926465 @default.
- W4386069665 cites W3013029840 @default.
- W4386069665 cites W3015925452 @default.
- W4386069665 cites W3093261564 @default.
- W4386069665 cites W3094156580 @default.
- W4386069665 cites W3098637688 @default.
- W4386069665 cites W3098917838 @default.
- W4386069665 cites W3123344745 @default.
- W4386069665 cites W3138200812 @default.
- W4386069665 cites W3154595990 @default.
- W4386069665 cites W3179615595 @default.
- W4386069665 cites W3193532867 @default.
- W4386069665 cites W3202304180 @default.
- W4386069665 cites W4281999467 @default.
- W4386069665 cites W4283711115 @default.
- W4386069665 cites W4312984972 @default.
- W4386069665 doi "https://doi.org/10.3390/s23177318" @default.
- W4386069665 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37687772" @default.
- W4386069665 hasPublicationYear "2023" @default.
- W4386069665 type Work @default.
- W4386069665 citedByCount "0" @default.
- W4386069665 crossrefType "journal-article" @default.
- W4386069665 hasAuthorship W4386069665A5037137798 @default.
- W4386069665 hasAuthorship W4386069665A5071910735 @default.
- W4386069665 hasAuthorship W4386069665A5072599767 @default.
- W4386069665 hasBestOaLocation W43860696651 @default.
- W4386069665 hasConcept C101738243 @default.
- W4386069665 hasConcept C108583219 @default.
- W4386069665 hasConcept C119857082 @default.
- W4386069665 hasConcept C121608353 @default.
- W4386069665 hasConcept C124504099 @default.
- W4386069665 hasConcept C126322002 @default.
- W4386069665 hasConcept C153180895 @default.
- W4386069665 hasConcept C154945302 @default.
- W4386069665 hasConcept C2776321320 @default.
- W4386069665 hasConcept C41008148 @default.
- W4386069665 hasConcept C530470458 @default.
- W4386069665 hasConcept C71924100 @default.
- W4386069665 hasConcept C89600930 @default.
- W4386069665 hasConceptScore W4386069665C101738243 @default.
- W4386069665 hasConceptScore W4386069665C108583219 @default.
- W4386069665 hasConceptScore W4386069665C119857082 @default.
- W4386069665 hasConceptScore W4386069665C121608353 @default.
- W4386069665 hasConceptScore W4386069665C124504099 @default.
- W4386069665 hasConceptScore W4386069665C126322002 @default.
- W4386069665 hasConceptScore W4386069665C153180895 @default.
- W4386069665 hasConceptScore W4386069665C154945302 @default.
- W4386069665 hasConceptScore W4386069665C2776321320 @default.
- W4386069665 hasConceptScore W4386069665C41008148 @default.
- W4386069665 hasConceptScore W4386069665C530470458 @default.
- W4386069665 hasConceptScore W4386069665C71924100 @default.
- W4386069665 hasConceptScore W4386069665C89600930 @default.
- W4386069665 hasIssue "17" @default.
- W4386069665 hasLocation W43860696651 @default.
- W4386069665 hasLocation W43860696652 @default.
- W4386069665 hasOpenAccess W4386069665 @default.
- W4386069665 hasPrimaryLocation W43860696651 @default.
- W4386069665 hasRelatedWork W2292254049 @default.
- W4386069665 hasRelatedWork W2669956259 @default.
- W4386069665 hasRelatedWork W2790662084 @default.
- W4386069665 hasRelatedWork W2897995864 @default.
- W4386069665 hasRelatedWork W2939353110 @default.