Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386069680> ?p ?o ?g. }
- W4386069680 abstract "Abstract In this research, for some different Schottky type structures with and without a nanocomposite interfacial layer, the current–voltage (I–V) characteristics have been investigated by using different Machine Learning (ML) algorithms to predict and analyze the structures’ principal electric parameters such as leakage current (I 0 ), barrier height ( $${varphi }_{B0}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>φ</mml:mi> <mml:mrow> <mml:mi>B</mml:mi> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math> ), ideality factor (n), series resistance (R s ), shunt resistance (R sh ), rectifying ratio (RR), and interface states density (N ss ). The interfacial nanocomposite layer is made by composing polyvinyl-pyrrolidone (PVP), zinc titanate (ZnTiO 3 ), and graphene (Gr) nanostructures. The Gaussian Process Regression (GPR), Kernel Ridge Regression (KRR), Support Vector Regression (SVR), and Artificial Neural Network (ANN) are used as ML algorithms. The ML techniques training data are obtained using the thermionic emission method. Finally, by comparing the experimental and predicted results, the performance of the different ML algorithms in predicting the electrical parameters of Schottky diodes (SDs) has been compared to find the optimized ML algorithm. The ML predictions of basic electrical parameters by almost all algorithms are in good agreement with the actual values, while the SVR model has predicted closer values to the corresponding actual ones. The obtained results show that the quantity of the leakage current and N ss for MS type SD decreases, and φ B0 increases with the interfacial layer usage, especially with graphene dopant." @default.
- W4386069680 created "2023-08-23" @default.
- W4386069680 creator A5000158622 @default.
- W4386069680 creator A5013097487 @default.
- W4386069680 creator A5038138873 @default.
- W4386069680 creator A5044258655 @default.
- W4386069680 creator A5056991611 @default.
- W4386069680 creator A5059375815 @default.
- W4386069680 date "2023-08-22" @default.
- W4386069680 modified "2023-10-11" @default.
- W4386069680 title "Machine learning approach for predicting electrical features of Schottky structures with graphene and ZnTiO3 nanostructures doped in PVP interfacial layer" @default.
- W4386069680 cites W1975851231 @default.
- W4386069680 cites W1982064774 @default.
- W4386069680 cites W2018529136 @default.
- W4386069680 cites W2020632751 @default.
- W4386069680 cites W2027550954 @default.
- W4386069680 cites W2051756120 @default.
- W4386069680 cites W2074517456 @default.
- W4386069680 cites W2074821454 @default.
- W4386069680 cites W2089982504 @default.
- W4386069680 cites W2093014515 @default.
- W4386069680 cites W2097745317 @default.
- W4386069680 cites W2104489082 @default.
- W4386069680 cites W2305077326 @default.
- W4386069680 cites W2337141473 @default.
- W4386069680 cites W2407532370 @default.
- W4386069680 cites W2622824681 @default.
- W4386069680 cites W2809115416 @default.
- W4386069680 cites W2895812227 @default.
- W4386069680 cites W2902857841 @default.
- W4386069680 cites W3011304382 @default.
- W4386069680 cites W3021125684 @default.
- W4386069680 cites W3043243742 @default.
- W4386069680 cites W3080255084 @default.
- W4386069680 cites W3129039627 @default.
- W4386069680 cites W3131731514 @default.
- W4386069680 cites W3134423019 @default.
- W4386069680 cites W3137763906 @default.
- W4386069680 cites W3147276976 @default.
- W4386069680 cites W3199095323 @default.
- W4386069680 cites W3199883166 @default.
- W4386069680 cites W3203747215 @default.
- W4386069680 cites W3204404779 @default.
- W4386069680 cites W3206210972 @default.
- W4386069680 cites W3216144101 @default.
- W4386069680 cites W4200336539 @default.
- W4386069680 cites W4206419394 @default.
- W4386069680 cites W4211182742 @default.
- W4386069680 cites W4213113494 @default.
- W4386069680 cites W4214764980 @default.
- W4386069680 cites W4220751823 @default.
- W4386069680 cites W4224037372 @default.
- W4386069680 cites W4224242327 @default.
- W4386069680 cites W4225278734 @default.
- W4386069680 cites W4229026067 @default.
- W4386069680 cites W4282977865 @default.
- W4386069680 cites W4283263325 @default.
- W4386069680 cites W4289832193 @default.
- W4386069680 cites W4310335448 @default.
- W4386069680 cites W4372215166 @default.
- W4386069680 doi "https://doi.org/10.1038/s41598-023-41000-z" @default.
- W4386069680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37607982" @default.
- W4386069680 hasPublicationYear "2023" @default.
- W4386069680 type Work @default.
- W4386069680 citedByCount "0" @default.
- W4386069680 crossrefType "journal-article" @default.
- W4386069680 hasAuthorship W4386069680A5000158622 @default.
- W4386069680 hasAuthorship W4386069680A5013097487 @default.
- W4386069680 hasAuthorship W4386069680A5038138873 @default.
- W4386069680 hasAuthorship W4386069680A5044258655 @default.
- W4386069680 hasAuthorship W4386069680A5056991611 @default.
- W4386069680 hasAuthorship W4386069680A5059375815 @default.
- W4386069680 hasBestOaLocation W43860696801 @default.
- W4386069680 hasConcept C113196181 @default.
- W4386069680 hasConcept C11413529 @default.
- W4386069680 hasConcept C119599485 @default.
- W4386069680 hasConcept C119857082 @default.
- W4386069680 hasConcept C12267149 @default.
- W4386069680 hasConcept C127413603 @default.
- W4386069680 hasConcept C14485415 @default.
- W4386069680 hasConcept C154945302 @default.
- W4386069680 hasConcept C159985019 @default.
- W4386069680 hasConcept C165801399 @default.
- W4386069680 hasConcept C171250308 @default.
- W4386069680 hasConcept C185592680 @default.
- W4386069680 hasConcept C192562407 @default.
- W4386069680 hasConcept C205200001 @default.
- W4386069680 hasConcept C30080830 @default.
- W4386069680 hasConcept C41008148 @default.
- W4386069680 hasConcept C43617362 @default.
- W4386069680 hasConcept C49040817 @default.
- W4386069680 hasConcept C78434282 @default.
- W4386069680 hasConcept C94857076 @default.
- W4386069680 hasConceptScore W4386069680C113196181 @default.
- W4386069680 hasConceptScore W4386069680C11413529 @default.
- W4386069680 hasConceptScore W4386069680C119599485 @default.
- W4386069680 hasConceptScore W4386069680C119857082 @default.
- W4386069680 hasConceptScore W4386069680C12267149 @default.
- W4386069680 hasConceptScore W4386069680C127413603 @default.
- W4386069680 hasConceptScore W4386069680C14485415 @default.