Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386071217> ?p ?o ?g. }
- W4386071217 endingPage "166506" @default.
- W4386071217 startingPage "166506" @default.
- W4386071217 abstract "Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures." @default.
- W4386071217 created "2023-08-23" @default.
- W4386071217 creator A5011463858 @default.
- W4386071217 creator A5035375708 @default.
- W4386071217 creator A5042493520 @default.
- W4386071217 date "2023-11-01" @default.
- W4386071217 modified "2023-10-14" @default.
- W4386071217 title "Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data" @default.
- W4386071217 cites W1986867226 @default.
- W4386071217 cites W2102636708 @default.
- W4386071217 cites W2296974127 @default.
- W4386071217 cites W2500751094 @default.
- W4386071217 cites W2541775203 @default.
- W4386071217 cites W2570895416 @default.
- W4386071217 cites W2588161437 @default.
- W4386071217 cites W2792711805 @default.
- W4386071217 cites W2796551435 @default.
- W4386071217 cites W2843555282 @default.
- W4386071217 cites W2888527098 @default.
- W4386071217 cites W2922005827 @default.
- W4386071217 cites W2952562136 @default.
- W4386071217 cites W2955613755 @default.
- W4386071217 cites W2962949934 @default.
- W4386071217 cites W2973107540 @default.
- W4386071217 cites W2977341069 @default.
- W4386071217 cites W2988949680 @default.
- W4386071217 cites W2990955039 @default.
- W4386071217 cites W2997639909 @default.
- W4386071217 cites W2999281425 @default.
- W4386071217 cites W3001604145 @default.
- W4386071217 cites W3013755684 @default.
- W4386071217 cites W3032477746 @default.
- W4386071217 cites W3117629641 @default.
- W4386071217 cites W3135698771 @default.
- W4386071217 cites W3161183126 @default.
- W4386071217 cites W3167703812 @default.
- W4386071217 cites W3176923149 @default.
- W4386071217 cites W3198737918 @default.
- W4386071217 cites W3209750664 @default.
- W4386071217 cites W3215669537 @default.
- W4386071217 cites W4210907174 @default.
- W4386071217 cites W4220890201 @default.
- W4386071217 cites W4223594669 @default.
- W4386071217 cites W4224947654 @default.
- W4386071217 cites W4284882417 @default.
- W4386071217 cites W4286567460 @default.
- W4386071217 cites W4290929874 @default.
- W4386071217 cites W4293762926 @default.
- W4386071217 cites W4310064234 @default.
- W4386071217 cites W4310737702 @default.
- W4386071217 cites W4312685343 @default.
- W4386071217 cites W4323543276 @default.
- W4386071217 cites W4360604571 @default.
- W4386071217 cites W4376620236 @default.
- W4386071217 cites W875826518 @default.
- W4386071217 doi "https://doi.org/10.1016/j.scitotenv.2023.166506" @default.
- W4386071217 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37619734" @default.
- W4386071217 hasPublicationYear "2023" @default.
- W4386071217 type Work @default.
- W4386071217 citedByCount "0" @default.
- W4386071217 crossrefType "journal-article" @default.
- W4386071217 hasAuthorship W4386071217A5011463858 @default.
- W4386071217 hasAuthorship W4386071217A5035375708 @default.
- W4386071217 hasAuthorship W4386071217A5042493520 @default.
- W4386071217 hasConcept C108583219 @default.
- W4386071217 hasConcept C111919701 @default.
- W4386071217 hasConcept C119857082 @default.
- W4386071217 hasConcept C121332964 @default.
- W4386071217 hasConcept C124101348 @default.
- W4386071217 hasConcept C154945302 @default.
- W4386071217 hasConcept C39432304 @default.
- W4386071217 hasConcept C41008148 @default.
- W4386071217 hasConcept C69357855 @default.
- W4386071217 hasConcept C81363708 @default.
- W4386071217 hasConcept C97355855 @default.
- W4386071217 hasConcept C98045186 @default.
- W4386071217 hasConceptScore W4386071217C108583219 @default.
- W4386071217 hasConceptScore W4386071217C111919701 @default.
- W4386071217 hasConceptScore W4386071217C119857082 @default.
- W4386071217 hasConceptScore W4386071217C121332964 @default.
- W4386071217 hasConceptScore W4386071217C124101348 @default.
- W4386071217 hasConceptScore W4386071217C154945302 @default.
- W4386071217 hasConceptScore W4386071217C39432304 @default.
- W4386071217 hasConceptScore W4386071217C41008148 @default.
- W4386071217 hasConceptScore W4386071217C69357855 @default.
- W4386071217 hasConceptScore W4386071217C81363708 @default.
- W4386071217 hasConceptScore W4386071217C97355855 @default.
- W4386071217 hasConceptScore W4386071217C98045186 @default.
- W4386071217 hasFunder F4320321001 @default.
- W4386071217 hasFunder F4320329794 @default.
- W4386071217 hasLocation W43860712171 @default.
- W4386071217 hasLocation W43860712172 @default.
- W4386071217 hasOpenAccess W4386071217 @default.
- W4386071217 hasPrimaryLocation W43860712171 @default.
- W4386071217 hasRelatedWork W2611989081 @default.
- W4386071217 hasRelatedWork W3029198973 @default.
- W4386071217 hasRelatedWork W3133861977 @default.
- W4386071217 hasRelatedWork W3167935049 @default.