Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386071811> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386071811 abstract "Maintenance is one of the critical operations undertaken in any manufacturing facility; hence, it represents an essential function for every plant. However, it is considered a non-added value to the product that demands minimizing its cost function. With maintenance costing around 15% to 60% of the total plant conversion budget, the modern factory must employ effective and smart predictive maintenance techniques. This is where the potential of machine learning powered by predictive algorithms can provide an edge on both the cost and the availability of the machines and the plant. This paper discusses predictive maintenance, machine learning models, and techniques. It develops a CNN-LSTM architecture that facilitates learning from collected data from a selected system and successfully conducts its predictive maintenance functions. The developed Machine Learning-based prediction algorithm is tested using potential datasets with different applications to establish a benchmark for its performance and allow its benefits to be measured and analyzed. Also, the paper compares the obtained results with those that represent the state-of-the-art relevant to different learning algorithms available in the literature and suggests future work for potential extension and performance improvement." @default.
- W4386071811 created "2023-08-23" @default.
- W4386071811 creator A5033966208 @default.
- W4386071811 creator A5053415094 @default.
- W4386071811 date "2023-08-06" @default.
- W4386071811 modified "2023-10-16" @default.
- W4386071811 title "Machine Learning-Based Predictive Maintenance: Using CNN – LSTM network" @default.
- W4386071811 cites W2120841219 @default.
- W4386071811 cites W2122585011 @default.
- W4386071811 cites W2136848157 @default.
- W4386071811 cites W2293634267 @default.
- W4386071811 cites W2539167253 @default.
- W4386071811 cites W2754252319 @default.
- W4386071811 cites W2772084711 @default.
- W4386071811 cites W2911964244 @default.
- W4386071811 cites W2972137370 @default.
- W4386071811 cites W3033830825 @default.
- W4386071811 cites W3092012490 @default.
- W4386071811 cites W3117770186 @default.
- W4386071811 cites W3120284962 @default.
- W4386071811 cites W4221117073 @default.
- W4386071811 cites W4255095071 @default.
- W4386071811 cites W4299950170 @default.
- W4386071811 doi "https://doi.org/10.1109/icma57826.2023.10216091" @default.
- W4386071811 hasPublicationYear "2023" @default.
- W4386071811 type Work @default.
- W4386071811 citedByCount "0" @default.
- W4386071811 crossrefType "proceedings-article" @default.
- W4386071811 hasAuthorship W4386071811A5033966208 @default.
- W4386071811 hasAuthorship W4386071811A5053415094 @default.
- W4386071811 hasConcept C119857082 @default.
- W4386071811 hasConcept C127413603 @default.
- W4386071811 hasConcept C13280743 @default.
- W4386071811 hasConcept C14036430 @default.
- W4386071811 hasConcept C144133560 @default.
- W4386071811 hasConcept C154945302 @default.
- W4386071811 hasConcept C162853370 @default.
- W4386071811 hasConcept C164624739 @default.
- W4386071811 hasConcept C185798385 @default.
- W4386071811 hasConcept C199360897 @default.
- W4386071811 hasConcept C200601418 @default.
- W4386071811 hasConcept C205649164 @default.
- W4386071811 hasConcept C40149104 @default.
- W4386071811 hasConcept C41008148 @default.
- W4386071811 hasConcept C70452415 @default.
- W4386071811 hasConcept C78458016 @default.
- W4386071811 hasConcept C86803240 @default.
- W4386071811 hasConceptScore W4386071811C119857082 @default.
- W4386071811 hasConceptScore W4386071811C127413603 @default.
- W4386071811 hasConceptScore W4386071811C13280743 @default.
- W4386071811 hasConceptScore W4386071811C14036430 @default.
- W4386071811 hasConceptScore W4386071811C144133560 @default.
- W4386071811 hasConceptScore W4386071811C154945302 @default.
- W4386071811 hasConceptScore W4386071811C162853370 @default.
- W4386071811 hasConceptScore W4386071811C164624739 @default.
- W4386071811 hasConceptScore W4386071811C185798385 @default.
- W4386071811 hasConceptScore W4386071811C199360897 @default.
- W4386071811 hasConceptScore W4386071811C200601418 @default.
- W4386071811 hasConceptScore W4386071811C205649164 @default.
- W4386071811 hasConceptScore W4386071811C40149104 @default.
- W4386071811 hasConceptScore W4386071811C41008148 @default.
- W4386071811 hasConceptScore W4386071811C70452415 @default.
- W4386071811 hasConceptScore W4386071811C78458016 @default.
- W4386071811 hasConceptScore W4386071811C86803240 @default.
- W4386071811 hasLocation W43860718111 @default.
- W4386071811 hasOpenAccess W4386071811 @default.
- W4386071811 hasPrimaryLocation W43860718111 @default.
- W4386071811 hasRelatedWork W112744582 @default.
- W4386071811 hasRelatedWork W1485630101 @default.
- W4386071811 hasRelatedWork W1988003219 @default.
- W4386071811 hasRelatedWork W2151148311 @default.
- W4386071811 hasRelatedWork W2498017833 @default.
- W4386071811 hasRelatedWork W2961085424 @default.
- W4386071811 hasRelatedWork W4286629047 @default.
- W4386071811 hasRelatedWork W4306321456 @default.
- W4386071811 hasRelatedWork W4306674287 @default.
- W4386071811 hasRelatedWork W4224009465 @default.
- W4386071811 isParatext "false" @default.
- W4386071811 isRetracted "false" @default.
- W4386071811 workType "article" @default.