Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386072610> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386072610 endingPage "e858" @default.
- W4386072610 startingPage "e845" @default.
- W4386072610 abstract "Acute blood loss anemia requiring allogeneic blood transfusion is still a postoperative complication of total knee arthroplasty (TKA). This study aimed to use machine learning models for the prediction of blood transfusion after primary TKA and to identify contributing factors.A total of 2,093 patients who underwent primary TKA at our institution were evaluated using data extracted from the hospital quality improvement database to identify patient demographics and surgical variables that may be associated with blood transfusion. A multilayer perceptron neural network (MPNN) machine learning algorithm was used to predict risk factors for blood transfusion and factors associated with increased length of stay. Statistical analyses including bivariate correlate analysis, Chi-Square test, and Student t-test were performed for demographic analysis and to determine the correlation between blood transfusion and other variables.The results demonstrated important factors associated with transfusion rates, including preoperative hemoglobin level, preoperative creatinine level, length of surgery, simultaneous bilateral surgeries, tranexamic acid usage, American Society of Anesthesiologists Physical Status score, preoperative albumin level, ethanol usage, preoperative anticoagulation medications, age, and TKA type (conventional versus robotic-assisted). Patients who underwent a blood transfusion had a markedly greater length of stay than those who did not. The MPNN machine learning model achieved excellent performance across discrimination (AUC = 0.894).The MPNN machine learning model showed its power as a statistical analysis tool to predict the ranking of factors for blood transfusion. Traditional statistics are unable to differentiate importance or predict in the same manner as a machine learning model.This study demonstrated that MPNN for the prediction of patient-specific blood transfusion rates after TKA represented a novel application of machine learning with the potential to improve preoperative planning for treatment outcomes." @default.
- W4386072610 created "2023-08-23" @default.
- W4386072610 creator A5012726142 @default.
- W4386072610 creator A5030593598 @default.
- W4386072610 creator A5055630689 @default.
- W4386072610 creator A5062924081 @default.
- W4386072610 creator A5064032310 @default.
- W4386072610 creator A5064124604 @default.
- W4386072610 date "2023-08-21" @default.
- W4386072610 modified "2023-10-10" @default.
- W4386072610 title "Predicting Factors for Blood Transfusion in Primary Total Knee Arthroplasty Using a Machine Learning Method" @default.
- W4386072610 cites W1971146482 @default.
- W4386072610 cites W1984164333 @default.
- W4386072610 cites W1992780281 @default.
- W4386072610 cites W2059089998 @default.
- W4386072610 cites W2084825101 @default.
- W4386072610 cites W2084983713 @default.
- W4386072610 cites W2147429876 @default.
- W4386072610 cites W2156653052 @default.
- W4386072610 cites W2163417032 @default.
- W4386072610 cites W2400816923 @default.
- W4386072610 cites W2531750597 @default.
- W4386072610 cites W2544516736 @default.
- W4386072610 cites W2561225636 @default.
- W4386072610 cites W2596164391 @default.
- W4386072610 cites W2797763839 @default.
- W4386072610 cites W2913107319 @default.
- W4386072610 cites W2950320969 @default.
- W4386072610 cites W2952357272 @default.
- W4386072610 cites W2969527875 @default.
- W4386072610 cites W2969699269 @default.
- W4386072610 cites W2996639297 @default.
- W4386072610 cites W307487952 @default.
- W4386072610 cites W3131312473 @default.
- W4386072610 cites W3134892999 @default.
- W4386072610 cites W3184448743 @default.
- W4386072610 cites W4213237649 @default.
- W4386072610 cites W4225412106 @default.
- W4386072610 cites W4234915726 @default.
- W4386072610 cites W4285891264 @default.
- W4386072610 doi "https://doi.org/10.5435/jaaos-d-23-00063" @default.
- W4386072610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37733328" @default.
- W4386072610 hasPublicationYear "2023" @default.
- W4386072610 type Work @default.
- W4386072610 citedByCount "0" @default.
- W4386072610 crossrefType "journal-article" @default.
- W4386072610 hasAuthorship W4386072610A5012726142 @default.
- W4386072610 hasAuthorship W4386072610A5030593598 @default.
- W4386072610 hasAuthorship W4386072610A5055630689 @default.
- W4386072610 hasAuthorship W4386072610A5062924081 @default.
- W4386072610 hasAuthorship W4386072610A5064032310 @default.
- W4386072610 hasAuthorship W4386072610A5064124604 @default.
- W4386072610 hasConcept C141071460 @default.
- W4386072610 hasConcept C1862650 @default.
- W4386072610 hasConcept C2778336525 @default.
- W4386072610 hasConcept C2779637338 @default.
- W4386072610 hasConcept C2780014101 @default.
- W4386072610 hasConcept C2991743468 @default.
- W4386072610 hasConcept C71924100 @default.
- W4386072610 hasConceptScore W4386072610C141071460 @default.
- W4386072610 hasConceptScore W4386072610C1862650 @default.
- W4386072610 hasConceptScore W4386072610C2778336525 @default.
- W4386072610 hasConceptScore W4386072610C2779637338 @default.
- W4386072610 hasConceptScore W4386072610C2780014101 @default.
- W4386072610 hasConceptScore W4386072610C2991743468 @default.
- W4386072610 hasConceptScore W4386072610C71924100 @default.
- W4386072610 hasIssue "19" @default.
- W4386072610 hasLocation W43860726101 @default.
- W4386072610 hasLocation W43860726102 @default.
- W4386072610 hasOpenAccess W4386072610 @default.
- W4386072610 hasPrimaryLocation W43860726101 @default.
- W4386072610 hasRelatedWork W2118188452 @default.
- W4386072610 hasRelatedWork W2121932716 @default.
- W4386072610 hasRelatedWork W2212190858 @default.
- W4386072610 hasRelatedWork W2292123940 @default.
- W4386072610 hasRelatedWork W2376074389 @default.
- W4386072610 hasRelatedWork W2539195930 @default.
- W4386072610 hasRelatedWork W3045868972 @default.
- W4386072610 hasRelatedWork W3118036361 @default.
- W4386072610 hasRelatedWork W4214875478 @default.
- W4386072610 hasRelatedWork W4294878056 @default.
- W4386072610 hasVolume "31" @default.
- W4386072610 isParatext "false" @default.
- W4386072610 isRetracted "false" @default.
- W4386072610 workType "article" @default.