Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386074138> ?p ?o ?g. }
- W4386074138 endingPage "14" @default.
- W4386074138 startingPage "1" @default.
- W4386074138 abstract "In image processing, segmentation is a fundamental problem but an important step for advanced image processing problems. When dealing with hyperspectral image data, the task becomes much more challenging due to the large number of features (dimension), higher nonlinearity, and greater capacity of the data. This paper proposes a solution of features reduction collaborative fuzzy c-means clustering (FR-CFCM) for hyperspectral remote sensing image analysis using random projection. The dimensional reduction technique is based on the Johnson Lindenstrauss lemma algorithm, preserving the relative distance between data samples. This can make clustering easier without affecting the clustering results. Moreover, by reducing dimensionality and sharing information among sub-data in collaborative clustering, it is possible to improve the performance and accuracy of hyperspectral remote sensing image analysis results. The experiments conducted on two hyperspectral image data sets with five validity indexes show that the proposed methods perform better compared with the other methods." @default.
- W4386074138 created "2023-08-23" @default.
- W4386074138 creator A5006784121 @default.
- W4386074138 creator A5007284333 @default.
- W4386074138 creator A5049530688 @default.
- W4386074138 creator A5064354132 @default.
- W4386074138 creator A5066124025 @default.
- W4386074138 date "2023-08-18" @default.
- W4386074138 modified "2023-09-25" @default.
- W4386074138 title "Features reduction collaborative fuzzy clustering for hyperspectral remote sensing images analysis" @default.
- W4386074138 cites W1932531222 @default.
- W4386074138 cites W1973892392 @default.
- W4386074138 cites W1987082149 @default.
- W4386074138 cites W1995450389 @default.
- W4386074138 cites W2005767407 @default.
- W4386074138 cites W2016860790 @default.
- W4386074138 cites W2029019271 @default.
- W4386074138 cites W2033213769 @default.
- W4386074138 cites W2036397044 @default.
- W4386074138 cites W2046373373 @default.
- W4386074138 cites W2067983477 @default.
- W4386074138 cites W2103535990 @default.
- W4386074138 cites W2104269704 @default.
- W4386074138 cites W2113535566 @default.
- W4386074138 cites W2125836634 @default.
- W4386074138 cites W2131864940 @default.
- W4386074138 cites W2135526710 @default.
- W4386074138 cites W2138434116 @default.
- W4386074138 cites W2138762030 @default.
- W4386074138 cites W2155501281 @default.
- W4386074138 cites W2161160262 @default.
- W4386074138 cites W2288723698 @default.
- W4386074138 cites W2308407318 @default.
- W4386074138 cites W2313932751 @default.
- W4386074138 cites W2494485523 @default.
- W4386074138 cites W2497075055 @default.
- W4386074138 cites W2568104758 @default.
- W4386074138 cites W2756242092 @default.
- W4386074138 cites W2897121118 @default.
- W4386074138 cites W2940732649 @default.
- W4386074138 cites W2944923436 @default.
- W4386074138 cites W2946787697 @default.
- W4386074138 cites W2949034001 @default.
- W4386074138 cites W2964301151 @default.
- W4386074138 cites W2979473749 @default.
- W4386074138 cites W3040647658 @default.
- W4386074138 cites W3045194428 @default.
- W4386074138 cites W4295768092 @default.
- W4386074138 cites W4312453611 @default.
- W4386074138 cites W4385627363 @default.
- W4386074138 doi "https://doi.org/10.3233/jifs-230511" @default.
- W4386074138 hasPublicationYear "2023" @default.
- W4386074138 type Work @default.
- W4386074138 citedByCount "0" @default.
- W4386074138 crossrefType "journal-article" @default.
- W4386074138 hasAuthorship W4386074138A5006784121 @default.
- W4386074138 hasAuthorship W4386074138A5007284333 @default.
- W4386074138 hasAuthorship W4386074138A5049530688 @default.
- W4386074138 hasAuthorship W4386074138A5064354132 @default.
- W4386074138 hasAuthorship W4386074138A5066124025 @default.
- W4386074138 hasConcept C111335779 @default.
- W4386074138 hasConcept C11413529 @default.
- W4386074138 hasConcept C124101348 @default.
- W4386074138 hasConcept C153180895 @default.
- W4386074138 hasConcept C154945302 @default.
- W4386074138 hasConcept C159078339 @default.
- W4386074138 hasConcept C17212007 @default.
- W4386074138 hasConcept C2524010 @default.
- W4386074138 hasConcept C33923547 @default.
- W4386074138 hasConcept C41008148 @default.
- W4386074138 hasConcept C57493831 @default.
- W4386074138 hasConcept C70518039 @default.
- W4386074138 hasConcept C73555534 @default.
- W4386074138 hasConceptScore W4386074138C111335779 @default.
- W4386074138 hasConceptScore W4386074138C11413529 @default.
- W4386074138 hasConceptScore W4386074138C124101348 @default.
- W4386074138 hasConceptScore W4386074138C153180895 @default.
- W4386074138 hasConceptScore W4386074138C154945302 @default.
- W4386074138 hasConceptScore W4386074138C159078339 @default.
- W4386074138 hasConceptScore W4386074138C17212007 @default.
- W4386074138 hasConceptScore W4386074138C2524010 @default.
- W4386074138 hasConceptScore W4386074138C33923547 @default.
- W4386074138 hasConceptScore W4386074138C41008148 @default.
- W4386074138 hasConceptScore W4386074138C57493831 @default.
- W4386074138 hasConceptScore W4386074138C70518039 @default.
- W4386074138 hasConceptScore W4386074138C73555534 @default.
- W4386074138 hasLocation W43860741381 @default.
- W4386074138 hasOpenAccess W4386074138 @default.
- W4386074138 hasPrimaryLocation W43860741381 @default.
- W4386074138 hasRelatedWork W2028628118 @default.
- W4386074138 hasRelatedWork W2062246128 @default.
- W4386074138 hasRelatedWork W2566133377 @default.
- W4386074138 hasRelatedWork W2609118866 @default.
- W4386074138 hasRelatedWork W2771936808 @default.
- W4386074138 hasRelatedWork W3154145980 @default.
- W4386074138 hasRelatedWork W3166562738 @default.
- W4386074138 hasRelatedWork W3173596272 @default.
- W4386074138 hasRelatedWork W3211035526 @default.