Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386074904> ?p ?o ?g. }
- W4386074904 endingPage "e071321" @default.
- W4386074904 startingPage "e071321" @default.
- W4386074904 abstract "To construct a machine-learning (ML) model for health systems with organised falls prevention programmes to identify older adults at risk for fall-related admissions.This prognostic study used population-level administrative health data to develop an ML prediction model.This study took place in Alberta, Canada during 2018-2019.Albertans aged 65 and older with at least one prior admission. Those with palliative conditions or emigrated out of Alberta were excluded.Unit of analysis was the individual person.We identified fall-related admissions. A CatBoost model was developed on 2018 data to predict risk of fall-related emergency department visits or hospitalisations. Temporal validation was done using 2019 data to evaluate model performance. We reported discrimination, calibration and other relevant metrics measured at the end of 2019 on both ranked predictions and predicted probability thresholds. A cost-savings simulation was performed using 2019 data.Final number of study participants was 224 445. The validation set had 203 584 participants with 19 389 fall-related events (9.5% pretest probability) and an ML model c-statistic of 0.70. The highest ranked predictions had post-test probabilities ranging from 40% to 50%. Net benefit analysis presented mixed results with some net benefit using the ML model in the 6%-30% range. The top 50 percentile of predicted risks represented nearly $C60 million in health system costs related to falls. Intervening on the top 25 or 50 percentiles of predicted risk could realise substantial (up to $C16 million) savings.ML prediction models based on population-level administrative data can assist health systems with fall prevention programmes identify older adults at risk of fall-related admissions and reduce costs. ML predictions based on ranked predictions or probability thresholds could guide subsequent interventions to mitigate fall risks. Increased access to diverse forms of data could improve ML performance and further reduce costs." @default.
- W4386074904 created "2023-08-23" @default.
- W4386074904 creator A5019800967 @default.
- W4386074904 creator A5041682941 @default.
- W4386074904 creator A5043380000 @default.
- W4386074904 creator A5045804790 @default.
- W4386074904 creator A5049788332 @default.
- W4386074904 creator A5067717687 @default.
- W4386074904 creator A5085103491 @default.
- W4386074904 creator A5092623690 @default.
- W4386074904 date "2023-08-01" @default.
- W4386074904 modified "2023-09-25" @default.
- W4386074904 title "Predicting falls-related admissions in older adults in Alberta, Canada: a machine-learning falls prevention tool developed using population administrative health data" @default.
- W4386074904 cites W1532834532 @default.
- W4386074904 cites W1580339848 @default.
- W4386074904 cites W1581514961 @default.
- W4386074904 cites W1775224937 @default.
- W4386074904 cites W1886566750 @default.
- W4386074904 cites W1965092590 @default.
- W4386074904 cites W1965523766 @default.
- W4386074904 cites W1966716734 @default.
- W4386074904 cites W1971009828 @default.
- W4386074904 cites W2054245924 @default.
- W4386074904 cites W2061326496 @default.
- W4386074904 cites W2071197092 @default.
- W4386074904 cites W2080146630 @default.
- W4386074904 cites W2100848218 @default.
- W4386074904 cites W2111786093 @default.
- W4386074904 cites W2128157368 @default.
- W4386074904 cites W2151287133 @default.
- W4386074904 cites W2154286581 @default.
- W4386074904 cites W2156267802 @default.
- W4386074904 cites W2162772535 @default.
- W4386074904 cites W2169464859 @default.
- W4386074904 cites W2226880313 @default.
- W4386074904 cites W2496911238 @default.
- W4386074904 cites W2542719835 @default.
- W4386074904 cites W2562251009 @default.
- W4386074904 cites W2595582532 @default.
- W4386074904 cites W2605975631 @default.
- W4386074904 cites W2760908289 @default.
- W4386074904 cites W2762658547 @default.
- W4386074904 cites W2899876413 @default.
- W4386074904 cites W2910420059 @default.
- W4386074904 cites W2921297510 @default.
- W4386074904 cites W2963092154 @default.
- W4386074904 cites W2963650911 @default.
- W4386074904 cites W2988716771 @default.
- W4386074904 cites W3010369769 @default.
- W4386074904 cites W3012895958 @default.
- W4386074904 cites W3035639029 @default.
- W4386074904 cites W3036249819 @default.
- W4386074904 cites W3097208481 @default.
- W4386074904 cites W3102476541 @default.
- W4386074904 cites W3106377951 @default.
- W4386074904 cites W3125937743 @default.
- W4386074904 cites W3165845449 @default.
- W4386074904 cites W3190681444 @default.
- W4386074904 cites W4283394996 @default.
- W4386074904 doi "https://doi.org/10.1136/bmjopen-2022-071321" @default.
- W4386074904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37607796" @default.
- W4386074904 hasPublicationYear "2023" @default.
- W4386074904 type Work @default.
- W4386074904 citedByCount "0" @default.
- W4386074904 crossrefType "journal-article" @default.
- W4386074904 hasAuthorship W4386074904A5019800967 @default.
- W4386074904 hasAuthorship W4386074904A5041682941 @default.
- W4386074904 hasAuthorship W4386074904A5043380000 @default.
- W4386074904 hasAuthorship W4386074904A5045804790 @default.
- W4386074904 hasAuthorship W4386074904A5049788332 @default.
- W4386074904 hasAuthorship W4386074904A5067717687 @default.
- W4386074904 hasAuthorship W4386074904A5085103491 @default.
- W4386074904 hasAuthorship W4386074904A5092623690 @default.
- W4386074904 hasBestOaLocation W43860749041 @default.
- W4386074904 hasConcept C105795698 @default.
- W4386074904 hasConcept C122048520 @default.
- W4386074904 hasConcept C142724271 @default.
- W4386074904 hasConcept C144024400 @default.
- W4386074904 hasConcept C149923435 @default.
- W4386074904 hasConcept C187155963 @default.
- W4386074904 hasConcept C190385971 @default.
- W4386074904 hasConcept C2776516907 @default.
- W4386074904 hasConcept C2778149918 @default.
- W4386074904 hasConcept C2908647359 @default.
- W4386074904 hasConcept C3017944768 @default.
- W4386074904 hasConcept C33923547 @default.
- W4386074904 hasConcept C545542383 @default.
- W4386074904 hasConcept C71924100 @default.
- W4386074904 hasConcept C74909509 @default.
- W4386074904 hasConcept C89128539 @default.
- W4386074904 hasConcept C99454951 @default.
- W4386074904 hasConceptScore W4386074904C105795698 @default.
- W4386074904 hasConceptScore W4386074904C122048520 @default.
- W4386074904 hasConceptScore W4386074904C142724271 @default.
- W4386074904 hasConceptScore W4386074904C144024400 @default.
- W4386074904 hasConceptScore W4386074904C149923435 @default.
- W4386074904 hasConceptScore W4386074904C187155963 @default.
- W4386074904 hasConceptScore W4386074904C190385971 @default.