Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386074911> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386074911 endingPage "283" @default.
- W4386074911 startingPage "251" @default.
- W4386074911 abstract "This chapter presents a study on the construction of a reliable machine learning model for water saturation prediction in thin beds reservoir using conventional logs. The study proposed and built two supervised machine learning algorithms and one deep learning algorithm to predict consistent results. The dataset was pre-processed, and the importance of input variables to model construction was discussed. The results showed that the conventional logs GR, log Rt, NPHI, DT, and RHOB are important input variables to the learning process. More attributes were added to the learning process, such as output volumes from petrophysical analysis, formation members, and the hydrocarbon column. The results demonstrated the effectiveness of applying support vector regression (SVR) in thin beds analysis with a correlation factor of 0.78. The backpropagation neural network and random forest regression algorithms were also applied to the same dataset, with almost similar performance results. Although the program could not model perfectly the peaks due to the complexity of the Three Forks Formation, the study showed that the models are valuable methods for thin beds water saturation prediction using only conventional logs and increasing input variables could improve prediction accuracy." @default.
- W4386074911 created "2023-08-23" @default.
- W4386074911 creator A5042353885 @default.
- W4386074911 creator A5088718314 @default.
- W4386074911 date "2023-07-31" @default.
- W4386074911 modified "2023-09-25" @default.
- W4386074911 title "Water Saturation Prediction Using Machine Learning and Deep Learning. Application to Three Forks Formation in Williston Basin, North Dakota, USA" @default.
- W4386074911 cites W1977727715 @default.
- W4386074911 cites W1995945562 @default.
- W4386074911 cites W2001225658 @default.
- W4386074911 cites W2009106675 @default.
- W4386074911 cites W2010500688 @default.
- W4386074911 cites W2039226002 @default.
- W4386074911 cites W2051274028 @default.
- W4386074911 cites W2065979877 @default.
- W4386074911 cites W2067135133 @default.
- W4386074911 cites W2073040595 @default.
- W4386074911 cites W2076098565 @default.
- W4386074911 cites W2076673261 @default.
- W4386074911 cites W2082140503 @default.
- W4386074911 cites W2099528333 @default.
- W4386074911 cites W2101276256 @default.
- W4386074911 cites W2106597062 @default.
- W4386074911 cites W2134189468 @default.
- W4386074911 cites W2156608310 @default.
- W4386074911 cites W2156909104 @default.
- W4386074911 cites W2159501187 @default.
- W4386074911 cites W2792667426 @default.
- W4386074911 cites W2890857964 @default.
- W4386074911 cites W4239748937 @default.
- W4386074911 doi "https://doi.org/10.1002/9781119389385.ch20" @default.
- W4386074911 hasPublicationYear "2023" @default.
- W4386074911 type Work @default.
- W4386074911 citedByCount "0" @default.
- W4386074911 crossrefType "other" @default.
- W4386074911 hasAuthorship W4386074911A5042353885 @default.
- W4386074911 hasAuthorship W4386074911A5088718314 @default.
- W4386074911 hasConcept C119857082 @default.
- W4386074911 hasConcept C12267149 @default.
- W4386074911 hasConcept C124101348 @default.
- W4386074911 hasConcept C127413603 @default.
- W4386074911 hasConcept C152877465 @default.
- W4386074911 hasConcept C154945302 @default.
- W4386074911 hasConcept C155032097 @default.
- W4386074911 hasConcept C169258074 @default.
- W4386074911 hasConcept C187320778 @default.
- W4386074911 hasConcept C41008148 @default.
- W4386074911 hasConcept C46293882 @default.
- W4386074911 hasConcept C50644808 @default.
- W4386074911 hasConcept C6648577 @default.
- W4386074911 hasConceptScore W4386074911C119857082 @default.
- W4386074911 hasConceptScore W4386074911C12267149 @default.
- W4386074911 hasConceptScore W4386074911C124101348 @default.
- W4386074911 hasConceptScore W4386074911C127413603 @default.
- W4386074911 hasConceptScore W4386074911C152877465 @default.
- W4386074911 hasConceptScore W4386074911C154945302 @default.
- W4386074911 hasConceptScore W4386074911C155032097 @default.
- W4386074911 hasConceptScore W4386074911C169258074 @default.
- W4386074911 hasConceptScore W4386074911C187320778 @default.
- W4386074911 hasConceptScore W4386074911C41008148 @default.
- W4386074911 hasConceptScore W4386074911C46293882 @default.
- W4386074911 hasConceptScore W4386074911C50644808 @default.
- W4386074911 hasConceptScore W4386074911C6648577 @default.
- W4386074911 hasLocation W43860749111 @default.
- W4386074911 hasOpenAccess W4386074911 @default.
- W4386074911 hasPrimaryLocation W43860749111 @default.
- W4386074911 hasRelatedWork W1996541855 @default.
- W4386074911 hasRelatedWork W2937631562 @default.
- W4386074911 hasRelatedWork W2985924212 @default.
- W4386074911 hasRelatedWork W3195168932 @default.
- W4386074911 hasRelatedWork W3195610867 @default.
- W4386074911 hasRelatedWork W4308191010 @default.
- W4386074911 hasRelatedWork W4321636153 @default.
- W4386074911 hasRelatedWork W4327511089 @default.
- W4386074911 hasRelatedWork W4377964522 @default.
- W4386074911 hasRelatedWork W4381414210 @default.
- W4386074911 isParatext "false" @default.
- W4386074911 isRetracted "false" @default.
- W4386074911 workType "other" @default.