Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386076183> ?p ?o ?g. }
- W4386076183 abstract "3D semantic scene graphs are a powerful holistic representation as they describe the individual objects and depict the relation between them. They are compact high-level graphs that enable many tasks requiring scene reasoning. In real-world settings, existing 3D estimation methods produce robust predictions that mostly rely on dense inputs. In this work, we propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence. Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network. The proposed pipeline simultaneously reconstructs a sparse point map and fuses entity estimation from the input images. The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities. Extensive experiments on the 3RScan dataset show the effectiveness of the proposed method in this challenging task, outperforming state-of-the-art approaches. Our implementation is available at https://shunchengwu.github.io/MonoSSG." @default.
- W4386076183 created "2023-08-23" @default.
- W4386076183 creator A5030061164 @default.
- W4386076183 creator A5041092666 @default.
- W4386076183 creator A5043978423 @default.
- W4386076183 creator A5046896448 @default.
- W4386076183 date "2023-06-01" @default.
- W4386076183 modified "2023-10-17" @default.
- W4386076183 title "Incremental 3D Semantic Scene Graph Prediction from RGB Sequences" @default.
- W4386076183 cites W1644641054 @default.
- W4386076183 cites W1905882502 @default.
- W4386076183 cites W1968027100 @default.
- W4386076183 cites W2009422376 @default.
- W4386076183 cites W2108598243 @default.
- W4386076183 cites W2152864241 @default.
- W4386076183 cites W2154355760 @default.
- W4386076183 cites W2194775991 @default.
- W4386076183 cites W2201312286 @default.
- W4386076183 cites W2396104755 @default.
- W4386076183 cites W2523049145 @default.
- W4386076183 cites W2560544142 @default.
- W4386076183 cites W2564632156 @default.
- W4386076183 cites W2579549467 @default.
- W4386076183 cites W2774394625 @default.
- W4386076183 cites W2784067459 @default.
- W4386076183 cites W2886388988 @default.
- W4386076183 cites W2888144883 @default.
- W4386076183 cites W2950096400 @default.
- W4386076183 cites W2963646814 @default.
- W4386076183 cites W2964032623 @default.
- W4386076183 cites W2964226622 @default.
- W4386076183 cites W2967353954 @default.
- W4386076183 cites W2981422075 @default.
- W4386076183 cites W2989738721 @default.
- W4386076183 cites W2992478697 @default.
- W4386076183 cites W3004300126 @default.
- W4386076183 cites W3016121695 @default.
- W4386076183 cites W3020500358 @default.
- W4386076183 cites W3034324855 @default.
- W4386076183 cites W3035424742 @default.
- W4386076183 cites W3039925688 @default.
- W4386076183 cites W3098467253 @default.
- W4386076183 cites W3102330937 @default.
- W4386076183 cites W3131863794 @default.
- W4386076183 cites W3164083741 @default.
- W4386076183 cites W3165610079 @default.
- W4386076183 cites W3170410843 @default.
- W4386076183 cites W3173181410 @default.
- W4386076183 cites W3175844808 @default.
- W4386076183 cites W3176709420 @default.
- W4386076183 cites W3183042936 @default.
- W4386076183 cites W3192660112 @default.
- W4386076183 cites W3193364460 @default.
- W4386076183 cites W3198299822 @default.
- W4386076183 cites W3204757729 @default.
- W4386076183 cites W4206996644 @default.
- W4386076183 cites W4214778243 @default.
- W4386076183 cites W4226236972 @default.
- W4386076183 cites W4283332944 @default.
- W4386076183 doi "https://doi.org/10.1109/cvpr52729.2023.00490" @default.
- W4386076183 hasPublicationYear "2023" @default.
- W4386076183 type Work @default.
- W4386076183 citedByCount "0" @default.
- W4386076183 crossrefType "proceedings-article" @default.
- W4386076183 hasAuthorship W4386076183A5030061164 @default.
- W4386076183 hasAuthorship W4386076183A5041092666 @default.
- W4386076183 hasAuthorship W4386076183A5043978423 @default.
- W4386076183 hasAuthorship W4386076183A5046896448 @default.
- W4386076183 hasConcept C124101348 @default.
- W4386076183 hasConcept C132525143 @default.
- W4386076183 hasConcept C153180895 @default.
- W4386076183 hasConcept C154945302 @default.
- W4386076183 hasConcept C17744445 @default.
- W4386076183 hasConcept C179372163 @default.
- W4386076183 hasConcept C199360897 @default.
- W4386076183 hasConcept C199539241 @default.
- W4386076183 hasConcept C205711294 @default.
- W4386076183 hasConcept C25343380 @default.
- W4386076183 hasConcept C2776359362 @default.
- W4386076183 hasConcept C31972630 @default.
- W4386076183 hasConcept C41008148 @default.
- W4386076183 hasConcept C43521106 @default.
- W4386076183 hasConcept C80444323 @default.
- W4386076183 hasConcept C82990744 @default.
- W4386076183 hasConcept C94625758 @default.
- W4386076183 hasConceptScore W4386076183C124101348 @default.
- W4386076183 hasConceptScore W4386076183C132525143 @default.
- W4386076183 hasConceptScore W4386076183C153180895 @default.
- W4386076183 hasConceptScore W4386076183C154945302 @default.
- W4386076183 hasConceptScore W4386076183C17744445 @default.
- W4386076183 hasConceptScore W4386076183C179372163 @default.
- W4386076183 hasConceptScore W4386076183C199360897 @default.
- W4386076183 hasConceptScore W4386076183C199539241 @default.
- W4386076183 hasConceptScore W4386076183C205711294 @default.
- W4386076183 hasConceptScore W4386076183C25343380 @default.
- W4386076183 hasConceptScore W4386076183C2776359362 @default.
- W4386076183 hasConceptScore W4386076183C31972630 @default.
- W4386076183 hasConceptScore W4386076183C41008148 @default.
- W4386076183 hasConceptScore W4386076183C43521106 @default.
- W4386076183 hasConceptScore W4386076183C80444323 @default.