Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386076315> ?p ?o ?g. }
- W4386076315 abstract "With the continuously thriving popularity around the world, fitness activity analytic has become an emerging research topic in computer vision. While a variety of new tasks and algorithms have been proposed recently, there are growing hunger for data resources involved in high-quality data, fine-grained labels, and diverse environments. In this paper, we present FLAG3D, a large-scale 3D fitness activity dataset with language instruction containing 180K sequences of 60 categories. FLAG3D features the following three aspects: 1) accurate and dense 3D human pose captured from advanced MoCap system to handle the complex activity and large movement, 2) detailed and professional language instruction to describe how to perform a specific activity, 3) versatile video resources from a high-tech MoCap system, rendering software, and cost-effective smartphones in natural environments. Extensive experiments and in-depth analysis show that FLAG3D contributes great research value for various challenges, such as cross-domain human action recognition, dynamic human mesh recovery, and language-guided human action generation. Our dataset and source code are publicly available at https://andytang15.github.io/FLAG3D." @default.
- W4386076315 created "2023-08-23" @default.
- W4386076315 creator A5004942213 @default.
- W4386076315 creator A5009997945 @default.
- W4386076315 creator A5051413026 @default.
- W4386076315 creator A5051529409 @default.
- W4386076315 creator A5056359877 @default.
- W4386076315 creator A5060674449 @default.
- W4386076315 creator A5066974590 @default.
- W4386076315 creator A5077076810 @default.
- W4386076315 creator A5082694832 @default.
- W4386076315 date "2023-06-01" @default.
- W4386076315 modified "2023-10-14" @default.
- W4386076315 title "FLAG3D: A 3D Fitness Activity Dataset with Language Instruction" @default.
- W4386076315 cites W1967554269 @default.
- W4386076315 cites W2099333815 @default.
- W4386076315 cites W2101032778 @default.
- W4386076315 cites W2126579184 @default.
- W4386076315 cites W2215643317 @default.
- W4386076315 cites W2552035314 @default.
- W4386076315 cites W2573098616 @default.
- W4386076315 cites W2576289912 @default.
- W4386076315 cites W2612706635 @default.
- W4386076315 cites W2618799552 @default.
- W4386076315 cites W2766709201 @default.
- W4386076315 cites W2796633859 @default.
- W4386076315 cites W2797184202 @default.
- W4386076315 cites W2798411580 @default.
- W4386076315 cites W2798637590 @default.
- W4386076315 cites W2798644314 @default.
- W4386076315 cites W2862846329 @default.
- W4386076315 cites W2888934629 @default.
- W4386076315 cites W2897492344 @default.
- W4386076315 cites W2897682634 @default.
- W4386076315 cites W2940457086 @default.
- W4386076315 cites W2944006115 @default.
- W4386076315 cites W2950568498 @default.
- W4386076315 cites W2962754033 @default.
- W4386076315 cites W2963524571 @default.
- W4386076315 cites W2963995996 @default.
- W4386076315 cites W2964084369 @default.
- W4386076315 cites W2964134613 @default.
- W4386076315 cites W2964221239 @default.
- W4386076315 cites W2971856312 @default.
- W4386076315 cites W2971866817 @default.
- W4386076315 cites W2975420824 @default.
- W4386076315 cites W2978956737 @default.
- W4386076315 cites W2981637078 @default.
- W4386076315 cites W2982625143 @default.
- W4386076315 cites W2990270790 @default.
- W4386076315 cites W2990673575 @default.
- W4386076315 cites W2997510589 @default.
- W4386076315 cites W3034401976 @default.
- W4386076315 cites W3035180180 @default.
- W4386076315 cites W3035186639 @default.
- W4386076315 cites W3035225512 @default.
- W4386076315 cites W3035551320 @default.
- W4386076315 cites W3035581100 @default.
- W4386076315 cites W3035714233 @default.
- W4386076315 cites W3036562930 @default.
- W4386076315 cites W3090839706 @default.
- W4386076315 cites W3102619627 @default.
- W4386076315 cites W3102937540 @default.
- W4386076315 cites W3106126861 @default.
- W4386076315 cites W3125772723 @default.
- W4386076315 cites W3144253442 @default.
- W4386076315 cites W3153832461 @default.
- W4386076315 cites W3160043706 @default.
- W4386076315 cites W3167491448 @default.
- W4386076315 cites W3167542203 @default.
- W4386076315 cites W3173873424 @default.
- W4386076315 cites W3174025609 @default.
- W4386076315 cites W3174980830 @default.
- W4386076315 cites W3176252609 @default.
- W4386076315 cites W3176327543 @default.
- W4386076315 cites W3203634062 @default.
- W4386076315 cites W3204323171 @default.
- W4386076315 cites W3206431030 @default.
- W4386076315 cites W4206332913 @default.
- W4386076315 cites W4214770715 @default.
- W4386076315 cites W4288079574 @default.
- W4386076315 cites W4312245820 @default.
- W4386076315 cites W4312311094 @default.
- W4386076315 cites W4312419390 @default.
- W4386076315 cites W4312635677 @default.
- W4386076315 cites W4312939486 @default.
- W4386076315 cites W4386071938 @default.
- W4386076315 doi "https://doi.org/10.1109/cvpr52729.2023.02117" @default.
- W4386076315 hasPublicationYear "2023" @default.
- W4386076315 type Work @default.
- W4386076315 citedByCount "0" @default.
- W4386076315 crossrefType "proceedings-article" @default.
- W4386076315 hasAuthorship W4386076315A5004942213 @default.
- W4386076315 hasAuthorship W4386076315A5009997945 @default.
- W4386076315 hasAuthorship W4386076315A5051413026 @default.
- W4386076315 hasAuthorship W4386076315A5051529409 @default.
- W4386076315 hasAuthorship W4386076315A5056359877 @default.
- W4386076315 hasAuthorship W4386076315A5060674449 @default.
- W4386076315 hasAuthorship W4386076315A5066974590 @default.
- W4386076315 hasAuthorship W4386076315A5077076810 @default.