Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386076319> ?p ?o ?g. }
- W4386076319 abstract "Neural networks for facial landmark detection are notoriously limited to a fixed set of landmarks in a dedicated layout, which must be specified at training time. Dedicated datasets must also be hand-annotated with the corresponding landmark configuration for training. We propose the first facial landmark detection network that can predict continuous, unlimited landmarks, allowing to specify the number and location of the desired landmarks at inference time. Our method combines a simple image feature extractor with a queried landmark predictor, and the user can specify any continuous query points relative to a 3D template face mesh as input. As it is not tied to a fixed set of landmarks, our method is able to leverage all pre-existing 2D landmark datasets for training, even if they have inconsistent landmark configurations. As a result, we present a very powerful facial landmark detector that can be trained once, and can be used readily for numerous applications like 3D face reconstruction, arbitrary face segmentation, and is even compatible with helmeted mounted cameras, and therefore could vastly simplify face tracking workflows for media and entertainment applications." @default.
- W4386076319 created "2023-08-23" @default.
- W4386076319 creator A5011929840 @default.
- W4386076319 creator A5018563642 @default.
- W4386076319 creator A5036716763 @default.
- W4386076319 creator A5085618571 @default.
- W4386076319 date "2023-06-01" @default.
- W4386076319 modified "2023-09-27" @default.
- W4386076319 title "Continuous Landmark Detection with 3D Queries" @default.
- W4386076319 cites W2012885984 @default.
- W4386076319 cites W2111372597 @default.
- W4386076319 cites W2129210471 @default.
- W4386076319 cites W2147025387 @default.
- W4386076319 cites W2157285372 @default.
- W4386076319 cites W2465108587 @default.
- W4386076319 cites W2474891805 @default.
- W4386076319 cites W2555445683 @default.
- W4386076319 cites W2770121394 @default.
- W4386076319 cites W2799930024 @default.
- W4386076319 cites W2944892540 @default.
- W4386076319 cites W2961875503 @default.
- W4386076319 cites W2962819150 @default.
- W4386076319 cites W2963253045 @default.
- W4386076319 cites W2963583792 @default.
- W4386076319 cites W2963789946 @default.
- W4386076319 cites W2964014798 @default.
- W4386076319 cites W2981978060 @default.
- W4386076319 cites W2982083293 @default.
- W4386076319 cites W2982772166 @default.
- W4386076319 cites W2990952853 @default.
- W4386076319 cites W3033055663 @default.
- W4386076319 cites W3034384783 @default.
- W4386076319 cites W3034798648 @default.
- W4386076319 cites W3035291735 @default.
- W4386076319 cites W3035382243 @default.
- W4386076319 cites W3104792420 @default.
- W4386076319 cites W3121594244 @default.
- W4386076319 cites W3126481101 @default.
- W4386076319 cites W3167788848 @default.
- W4386076319 cites W3174549955 @default.
- W4386076319 cites W3175199633 @default.
- W4386076319 cites W3199109143 @default.
- W4386076319 cites W3199262087 @default.
- W4386076319 cites W3204715535 @default.
- W4386076319 cites W4285601021 @default.
- W4386076319 cites W4312443924 @default.
- W4386076319 cites W4313135108 @default.
- W4386076319 cites W4328028163 @default.
- W4386076319 doi "https://doi.org/10.1109/cvpr52729.2023.01617" @default.
- W4386076319 hasPublicationYear "2023" @default.
- W4386076319 type Work @default.
- W4386076319 citedByCount "0" @default.
- W4386076319 crossrefType "proceedings-article" @default.
- W4386076319 hasAuthorship W4386076319A5011929840 @default.
- W4386076319 hasAuthorship W4386076319A5018563642 @default.
- W4386076319 hasAuthorship W4386076319A5036716763 @default.
- W4386076319 hasAuthorship W4386076319A5085618571 @default.
- W4386076319 hasConcept C138885662 @default.
- W4386076319 hasConcept C144024400 @default.
- W4386076319 hasConcept C153083717 @default.
- W4386076319 hasConcept C153180895 @default.
- W4386076319 hasConcept C154945302 @default.
- W4386076319 hasConcept C177212765 @default.
- W4386076319 hasConcept C177264268 @default.
- W4386076319 hasConcept C199360897 @default.
- W4386076319 hasConcept C2776214188 @default.
- W4386076319 hasConcept C2776401178 @default.
- W4386076319 hasConcept C2779304628 @default.
- W4386076319 hasConcept C2780297707 @default.
- W4386076319 hasConcept C31972630 @default.
- W4386076319 hasConcept C36289849 @default.
- W4386076319 hasConcept C41008148 @default.
- W4386076319 hasConcept C41895202 @default.
- W4386076319 hasConcept C52622490 @default.
- W4386076319 hasConcept C77088390 @default.
- W4386076319 hasConcept C89600930 @default.
- W4386076319 hasConceptScore W4386076319C138885662 @default.
- W4386076319 hasConceptScore W4386076319C144024400 @default.
- W4386076319 hasConceptScore W4386076319C153083717 @default.
- W4386076319 hasConceptScore W4386076319C153180895 @default.
- W4386076319 hasConceptScore W4386076319C154945302 @default.
- W4386076319 hasConceptScore W4386076319C177212765 @default.
- W4386076319 hasConceptScore W4386076319C177264268 @default.
- W4386076319 hasConceptScore W4386076319C199360897 @default.
- W4386076319 hasConceptScore W4386076319C2776214188 @default.
- W4386076319 hasConceptScore W4386076319C2776401178 @default.
- W4386076319 hasConceptScore W4386076319C2779304628 @default.
- W4386076319 hasConceptScore W4386076319C2780297707 @default.
- W4386076319 hasConceptScore W4386076319C31972630 @default.
- W4386076319 hasConceptScore W4386076319C36289849 @default.
- W4386076319 hasConceptScore W4386076319C41008148 @default.
- W4386076319 hasConceptScore W4386076319C41895202 @default.
- W4386076319 hasConceptScore W4386076319C52622490 @default.
- W4386076319 hasConceptScore W4386076319C77088390 @default.
- W4386076319 hasConceptScore W4386076319C89600930 @default.
- W4386076319 hasLocation W43860763191 @default.
- W4386076319 hasOpenAccess W4386076319 @default.
- W4386076319 hasPrimaryLocation W43860763191 @default.
- W4386076319 hasRelatedWork W166366606 @default.
- W4386076319 hasRelatedWork W1775397219 @default.