Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386078207> ?p ?o ?g. }
- W4386078207 endingPage "18" @default.
- W4386078207 startingPage "1" @default.
- W4386078207 abstract "Complementary multimodal remote sensing (RS) data often leads to more robust and accurate classification performance. However, not all modal data can be available at the time of inference due to imaging conditions. To mitigate this issue, cross-modal knowledge distillation becomes an effective method, as it can leverage the complementary characteristics of multimodal data to guide cross-modal classification in cases with missing data. Therefore, this paper examines the shortcomings of traditional CNN cross-modal distillation methods in land cover classification: 1) insufficient knowledge representation; and 2) unstable knowledge transfer. Moreover, a novel cross-modal graph knowledge representation and distillation learning (CGKR-DL) framework is proposed to enhance land cover classification performance. The proposed CGKR-DL designs a single-stream joint feature learning network with convolutional neural network and graph convolutional network (CNN-GCN) to effectively construct the remote topology of data based on the strong correlation between land objects, thus enhancing the knowledge representation ability of the network. In addition, a multi-granularity graph distillation method is proposed to compensate for the inability of traditional CNN distillation in handling graph-structured information, where a feature distillation module based on graph discrimination (FD-GDM) is designed for stable graph feature distillation. We evaluate CGKR-DL on three publicly available multimodal RS datasets (HS-LiDAR, HS-SAR and HS-SAR-DSM) and achieve a significant improvement in comparison with several state-of-the-art methods." @default.
- W4386078207 created "2023-08-23" @default.
- W4386078207 creator A5015582924 @default.
- W4386078207 creator A5020302879 @default.
- W4386078207 creator A5085025467 @default.
- W4386078207 creator A5087833114 @default.
- W4386078207 date "2023-01-01" @default.
- W4386078207 modified "2023-10-16" @default.
- W4386078207 title "Cross-modal Graph Knowledge Representation and Distillation Learning for Land Cover Classification" @default.
- W4386078207 cites W1993699518 @default.
- W4386078207 cites W2337271815 @default.
- W4386078207 cites W2586898334 @default.
- W4386078207 cites W2809440904 @default.
- W4386078207 cites W2897611955 @default.
- W4386078207 cites W2982242214 @default.
- W4386078207 cites W2995709945 @default.
- W4386078207 cites W2996478649 @default.
- W4386078207 cites W3004968762 @default.
- W4386078207 cites W3012166292 @default.
- W4386078207 cites W3034795332 @default.
- W4386078207 cites W3047443805 @default.
- W4386078207 cites W3107591966 @default.
- W4386078207 cites W3107716502 @default.
- W4386078207 cites W3121000959 @default.
- W4386078207 cites W3137622667 @default.
- W4386078207 cites W3202568050 @default.
- W4386078207 cites W3204731106 @default.
- W4386078207 cites W3206491758 @default.
- W4386078207 cites W3217792975 @default.
- W4386078207 cites W4212897988 @default.
- W4386078207 cites W4214535608 @default.
- W4386078207 cites W4220961468 @default.
- W4386078207 cites W4226070402 @default.
- W4386078207 cites W4226193485 @default.
- W4386078207 cites W4285190744 @default.
- W4386078207 cites W4285296042 @default.
- W4386078207 cites W4312208437 @default.
- W4386078207 cites W4312256840 @default.
- W4386078207 cites W4315606133 @default.
- W4386078207 cites W4322731396 @default.
- W4386078207 cites W4323896850 @default.
- W4386078207 cites W4362014056 @default.
- W4386078207 cites W4364321555 @default.
- W4386078207 cites W4366149080 @default.
- W4386078207 cites W4380763457 @default.
- W4386078207 doi "https://doi.org/10.1109/tgrs.2023.3307604" @default.
- W4386078207 hasPublicationYear "2023" @default.
- W4386078207 type Work @default.
- W4386078207 citedByCount "1" @default.
- W4386078207 countsByYear W43860782072023 @default.
- W4386078207 crossrefType "journal-article" @default.
- W4386078207 hasAuthorship W4386078207A5015582924 @default.
- W4386078207 hasAuthorship W4386078207A5020302879 @default.
- W4386078207 hasAuthorship W4386078207A5085025467 @default.
- W4386078207 hasAuthorship W4386078207A5087833114 @default.
- W4386078207 hasConcept C119857082 @default.
- W4386078207 hasConcept C124101348 @default.
- W4386078207 hasConcept C127413603 @default.
- W4386078207 hasConcept C132525143 @default.
- W4386078207 hasConcept C147176958 @default.
- W4386078207 hasConcept C153083717 @default.
- W4386078207 hasConcept C153180895 @default.
- W4386078207 hasConcept C154945302 @default.
- W4386078207 hasConcept C178790620 @default.
- W4386078207 hasConcept C185592680 @default.
- W4386078207 hasConcept C188027245 @default.
- W4386078207 hasConcept C204030448 @default.
- W4386078207 hasConcept C2776214188 @default.
- W4386078207 hasConcept C2780648208 @default.
- W4386078207 hasConcept C41008148 @default.
- W4386078207 hasConcept C4792198 @default.
- W4386078207 hasConcept C52622490 @default.
- W4386078207 hasConcept C59404180 @default.
- W4386078207 hasConcept C71139939 @default.
- W4386078207 hasConcept C80444323 @default.
- W4386078207 hasConcept C81363708 @default.
- W4386078207 hasConceptScore W4386078207C119857082 @default.
- W4386078207 hasConceptScore W4386078207C124101348 @default.
- W4386078207 hasConceptScore W4386078207C127413603 @default.
- W4386078207 hasConceptScore W4386078207C132525143 @default.
- W4386078207 hasConceptScore W4386078207C147176958 @default.
- W4386078207 hasConceptScore W4386078207C153083717 @default.
- W4386078207 hasConceptScore W4386078207C153180895 @default.
- W4386078207 hasConceptScore W4386078207C154945302 @default.
- W4386078207 hasConceptScore W4386078207C178790620 @default.
- W4386078207 hasConceptScore W4386078207C185592680 @default.
- W4386078207 hasConceptScore W4386078207C188027245 @default.
- W4386078207 hasConceptScore W4386078207C204030448 @default.
- W4386078207 hasConceptScore W4386078207C2776214188 @default.
- W4386078207 hasConceptScore W4386078207C2780648208 @default.
- W4386078207 hasConceptScore W4386078207C41008148 @default.
- W4386078207 hasConceptScore W4386078207C4792198 @default.
- W4386078207 hasConceptScore W4386078207C52622490 @default.
- W4386078207 hasConceptScore W4386078207C59404180 @default.
- W4386078207 hasConceptScore W4386078207C71139939 @default.
- W4386078207 hasConceptScore W4386078207C80444323 @default.
- W4386078207 hasConceptScore W4386078207C81363708 @default.
- W4386078207 hasLocation W43860782071 @default.