Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386078239> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4386078239 endingPage "90800" @default.
- W4386078239 startingPage "90780" @default.
- W4386078239 abstract "Cephalometric landmark identification is a crucial and significant procedure that is generally used for orthodontic treatment planning and diagnosis. Computer-aided fully automated solutions can assist orthodontists and orthognathic surgeons’ to precisely identify the landmarks from cephalograms more efficiently. Most of the existing research studies deployed Convolutional Neural Network models, transfer learning methods, and pre-trained architectures to predict the XY coordinates of landmarks from cephalometric radiographs. Deep learning architectures have achieved good results in accurately predicting landmarks compared to machine learning methodologies. In this paper, a custom CNN model integrated with Squeeze-and-Excitation (SE <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>B</sub> ) attention block named CephXNet architecture is proposed to automatically classify and predicts the XY coordinates of 19 landmarks from lateral cephalograms. The SE <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>B</sub> block, which can adaptively refine information from various feature channels of X-ray images models the interdependence between the channels to enhance the discriminative features and suppress noise. The Squeeze-and-Excitation block incorporated with multiple Convolution and Max pooling layers enhances independent channel feature learning and thereby improves the representational power of the proposed CephXNet architecture. The proposed framework obtained an accuracy of 97.72% for 19 landmark classifications and has achieved 88.06% and 78.72% of Successful Detection Rate (SDR) in clinically accepted 2mm precision range for test1 and test2 datasets provided in the 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge for dental X-ray analysis conducted by IEEE. Furthermore, the proposed CephXNet is also tested with private clinical dataset comprised of 100 cephalograms collected from Solanki Dental Care Clinic in Sharjah, United Arab Emirates. The proposed CephXNet model obtained a classification accuracy of 90.08% and an average SDR of 73.94% in the 2mm precision range. The experimental outcomes show proposed CephXNet model is efficient and has great potential to deploy in clinical practice." @default.
- W4386078239 created "2023-08-23" @default.
- W4386078239 creator A5041955225 @default.
- W4386078239 creator A5076924939 @default.
- W4386078239 date "2023-01-01" @default.
- W4386078239 modified "2023-09-26" @default.
- W4386078239 title "CephXNet: A Deep Convolutional Squeeze-and-Excitation Model for Landmark Prediction on Lateral Cephalograms" @default.
- W4386078239 cites W1598728784 @default.
- W4386078239 cites W1995003188 @default.
- W4386078239 cites W2069654534 @default.
- W4386078239 cites W2088467770 @default.
- W4386078239 cites W2095509840 @default.
- W4386078239 cites W2095733023 @default.
- W4386078239 cites W2102661073 @default.
- W4386078239 cites W2106705864 @default.
- W4386078239 cites W2126901101 @default.
- W4386078239 cites W2147662275 @default.
- W4386078239 cites W2156388720 @default.
- W4386078239 cites W2275865840 @default.
- W4386078239 cites W2569670712 @default.
- W4386078239 cites W2752782242 @default.
- W4386078239 cites W2901044295 @default.
- W4386078239 cites W2962611724 @default.
- W4386078239 cites W2963150697 @default.
- W4386078239 cites W2964221239 @default.
- W4386078239 cites W2979306609 @default.
- W4386078239 cites W3015607993 @default.
- W4386078239 cites W3021615148 @default.
- W4386078239 cites W3035565332 @default.
- W4386078239 cites W3036522859 @default.
- W4386078239 cites W3092450142 @default.
- W4386078239 cites W3098592896 @default.
- W4386078239 cites W3194199857 @default.
- W4386078239 cites W4317666363 @default.
- W4386078239 doi "https://doi.org/10.1109/access.2023.3307636" @default.
- W4386078239 hasPublicationYear "2023" @default.
- W4386078239 type Work @default.
- W4386078239 citedByCount "0" @default.
- W4386078239 crossrefType "journal-article" @default.
- W4386078239 hasAuthorship W4386078239A5041955225 @default.
- W4386078239 hasAuthorship W4386078239A5076924939 @default.
- W4386078239 hasBestOaLocation W43860782391 @default.
- W4386078239 hasConcept C108583219 @default.
- W4386078239 hasConcept C138885662 @default.
- W4386078239 hasConcept C153180895 @default.
- W4386078239 hasConcept C154945302 @default.
- W4386078239 hasConcept C2524010 @default.
- W4386078239 hasConcept C2776401178 @default.
- W4386078239 hasConcept C2777210771 @default.
- W4386078239 hasConcept C2780297707 @default.
- W4386078239 hasConcept C33923547 @default.
- W4386078239 hasConcept C41008148 @default.
- W4386078239 hasConcept C41895202 @default.
- W4386078239 hasConcept C70437156 @default.
- W4386078239 hasConcept C81363708 @default.
- W4386078239 hasConcept C97931131 @default.
- W4386078239 hasConceptScore W4386078239C108583219 @default.
- W4386078239 hasConceptScore W4386078239C138885662 @default.
- W4386078239 hasConceptScore W4386078239C153180895 @default.
- W4386078239 hasConceptScore W4386078239C154945302 @default.
- W4386078239 hasConceptScore W4386078239C2524010 @default.
- W4386078239 hasConceptScore W4386078239C2776401178 @default.
- W4386078239 hasConceptScore W4386078239C2777210771 @default.
- W4386078239 hasConceptScore W4386078239C2780297707 @default.
- W4386078239 hasConceptScore W4386078239C33923547 @default.
- W4386078239 hasConceptScore W4386078239C41008148 @default.
- W4386078239 hasConceptScore W4386078239C41895202 @default.
- W4386078239 hasConceptScore W4386078239C70437156 @default.
- W4386078239 hasConceptScore W4386078239C81363708 @default.
- W4386078239 hasConceptScore W4386078239C97931131 @default.
- W4386078239 hasFunder F4320319346 @default.
- W4386078239 hasLocation W43860782391 @default.
- W4386078239 hasOpenAccess W4386078239 @default.
- W4386078239 hasPrimaryLocation W43860782391 @default.
- W4386078239 hasRelatedWork W2043075591 @default.
- W4386078239 hasRelatedWork W2345735193 @default.
- W4386078239 hasRelatedWork W2514274290 @default.
- W4386078239 hasRelatedWork W2517027266 @default.
- W4386078239 hasRelatedWork W2724710774 @default.
- W4386078239 hasRelatedWork W2731899572 @default.
- W4386078239 hasRelatedWork W2970216048 @default.
- W4386078239 hasRelatedWork W3133861977 @default.
- W4386078239 hasRelatedWork W4312417841 @default.
- W4386078239 hasRelatedWork W4321369474 @default.
- W4386078239 hasVolume "11" @default.
- W4386078239 isParatext "false" @default.
- W4386078239 isRetracted "false" @default.
- W4386078239 workType "article" @default.