Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386087298> ?p ?o ?g. }
- W4386087298 endingPage "100389" @default.
- W4386087298 startingPage "100389" @default.
- W4386087298 abstract "PurposeTo develop an objective glaucoma damage severity classification system based on optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness measurements.DesignAlgorithm development for RNFL damage severity classification based on multicenter OCT data.Subjects and ParticipantsA total of 6561 circumpapillary RNFL profiles from 2269 eyes of 1171 subjects to develop models and 2505 RNFL profiles from 1099 eyes of 900 subjects to validate models.MethodsWe developed an unsupervised k-means model to identify clusters of eyes with similar RNFL thickness profiles. We annotated the clusters based on their respective global RNFL thickness. We computed the optimal global RNFL thickness thresholds that discriminated different severity levels based on Bayes’ minimum error principle. We validated the proposed pipeline based on an independent validation dataset with 2505 RNFL profiles from 1099 eyes of 900 subjects.Main Outcome MeasuresAccuracy, area under the receiver operating characteristic curve (AUC), and confusion matrix.ResultsThe k-means clustering discovered four clusters with 1382, 1613, 1727, and 1839 samples with mean global RNFL thickness of 58.3 μm (±8.9: Standard Deviation), 78.9 μm (±6.7), 87.7 μm (±8.2), and 101.5 μm (±7.9). The Bayes’ minimum error classifier identified optimal global RNFL values of >95 μm, 86 – 95 μm, and 70 – 85 μm and <70 μm for discriminating normal eyes and eyes at the early, moderate, and advanced stages of RNFL thickness loss. About 4% of normal eyes and 98% of eyes with advanced RNFL loss had either global or at least one quadrant RNFL thickness outside of normal limits provided by the OCT instrument.ConclusionsUnsupervised machine learning discovered that the optimal RNFL thresholds for separating normal eyes and eyes with early, moderate, and advanced RNFL loss were 95 μm, 85 μm, and 70 μm, respectively. This RNFL loss classification system is unbiased as there was no pre-assumption or human expert intervention in the development process. Additionally, it is objective, easy-to-use, and consistent which may augment glaucoma research and day-to-day clinical practice." @default.
- W4386087298 created "2023-08-24" @default.
- W4386087298 creator A5011555439 @default.
- W4386087298 creator A5016092761 @default.
- W4386087298 creator A5016237956 @default.
- W4386087298 creator A5023303498 @default.
- W4386087298 creator A5029120994 @default.
- W4386087298 creator A5036981123 @default.
- W4386087298 creator A5046119508 @default.
- W4386087298 creator A5047341378 @default.
- W4386087298 creator A5061237452 @default.
- W4386087298 creator A5076786379 @default.
- W4386087298 creator A5085093636 @default.
- W4386087298 creator A5092678294 @default.
- W4386087298 date "2024-03-01" @default.
- W4386087298 modified "2023-10-18" @default.
- W4386087298 title "An Artificial Intelligence Enabled System for Retinal Nerve Fiber Layer Thickness Damage Severity Staging" @default.
- W4386087298 cites W1970548437 @default.
- W4386087298 cites W1974576998 @default.
- W4386087298 cites W1976566530 @default.
- W4386087298 cites W1987971958 @default.
- W4386087298 cites W1989399186 @default.
- W4386087298 cites W2001447737 @default.
- W4386087298 cites W2020112862 @default.
- W4386087298 cites W2027338229 @default.
- W4386087298 cites W2029018082 @default.
- W4386087298 cites W2034588286 @default.
- W4386087298 cites W2034833603 @default.
- W4386087298 cites W2038127365 @default.
- W4386087298 cites W2050968191 @default.
- W4386087298 cites W2063316149 @default.
- W4386087298 cites W2076947973 @default.
- W4386087298 cites W2085708409 @default.
- W4386087298 cites W2095165925 @default.
- W4386087298 cites W2116084883 @default.
- W4386087298 cites W2124460576 @default.
- W4386087298 cites W2140591816 @default.
- W4386087298 cites W2169113983 @default.
- W4386087298 cites W2170354259 @default.
- W4386087298 cites W2405231667 @default.
- W4386087298 cites W2414083061 @default.
- W4386087298 cites W2742535843 @default.
- W4386087298 cites W2995814342 @default.
- W4386087298 cites W3011490500 @default.
- W4386087298 cites W3031208300 @default.
- W4386087298 cites W3081914873 @default.
- W4386087298 cites W3126825533 @default.
- W4386087298 cites W4242563711 @default.
- W4386087298 cites W4281837963 @default.
- W4386087298 doi "https://doi.org/10.1016/j.xops.2023.100389" @default.
- W4386087298 hasPublicationYear "2024" @default.
- W4386087298 type Work @default.
- W4386087298 citedByCount "0" @default.
- W4386087298 crossrefType "journal-article" @default.
- W4386087298 hasAuthorship W4386087298A5011555439 @default.
- W4386087298 hasAuthorship W4386087298A5016092761 @default.
- W4386087298 hasAuthorship W4386087298A5016237956 @default.
- W4386087298 hasAuthorship W4386087298A5023303498 @default.
- W4386087298 hasAuthorship W4386087298A5029120994 @default.
- W4386087298 hasAuthorship W4386087298A5036981123 @default.
- W4386087298 hasAuthorship W4386087298A5046119508 @default.
- W4386087298 hasAuthorship W4386087298A5047341378 @default.
- W4386087298 hasAuthorship W4386087298A5061237452 @default.
- W4386087298 hasAuthorship W4386087298A5076786379 @default.
- W4386087298 hasAuthorship W4386087298A5085093636 @default.
- W4386087298 hasAuthorship W4386087298A5092678294 @default.
- W4386087298 hasBestOaLocation W43860872981 @default.
- W4386087298 hasConcept C118487528 @default.
- W4386087298 hasConcept C119767625 @default.
- W4386087298 hasConcept C126322002 @default.
- W4386087298 hasConcept C154945302 @default.
- W4386087298 hasConcept C2778527774 @default.
- W4386087298 hasConcept C2778818243 @default.
- W4386087298 hasConcept C2780592520 @default.
- W4386087298 hasConcept C2780827179 @default.
- W4386087298 hasConcept C41008148 @default.
- W4386087298 hasConcept C58471807 @default.
- W4386087298 hasConcept C71924100 @default.
- W4386087298 hasConceptScore W4386087298C118487528 @default.
- W4386087298 hasConceptScore W4386087298C119767625 @default.
- W4386087298 hasConceptScore W4386087298C126322002 @default.
- W4386087298 hasConceptScore W4386087298C154945302 @default.
- W4386087298 hasConceptScore W4386087298C2778527774 @default.
- W4386087298 hasConceptScore W4386087298C2778818243 @default.
- W4386087298 hasConceptScore W4386087298C2780592520 @default.
- W4386087298 hasConceptScore W4386087298C2780827179 @default.
- W4386087298 hasConceptScore W4386087298C41008148 @default.
- W4386087298 hasConceptScore W4386087298C58471807 @default.
- W4386087298 hasConceptScore W4386087298C71924100 @default.
- W4386087298 hasFunder F4320306811 @default.
- W4386087298 hasFunder F4320332161 @default.
- W4386087298 hasFunder F4320337350 @default.
- W4386087298 hasIssue "2" @default.
- W4386087298 hasLocation W43860872981 @default.
- W4386087298 hasOpenAccess W4386087298 @default.
- W4386087298 hasPrimaryLocation W43860872981 @default.
- W4386087298 hasRelatedWork W2028110752 @default.
- W4386087298 hasRelatedWork W2038205473 @default.