Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386088258> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386088258 endingPage "852" @default.
- W4386088258 startingPage "843" @default.
- W4386088258 abstract "To achieve intelligent and effective fault diagnosis of motor bearings, a machine-learning-based approach is proposed in the paper. 1D-CNNs are adopted to extract the features and a softmax classifier is used to distinguish the faults. However, given that there are many kinds of faults in the complex system, and there is coupling between fault signals, the reliability of fault diagnosis based on single-dimension data is limited, therefore we take the current signals and vibration signals of the motor as the input simultaneously. What’s more, to achieve further improvement in fault diagnosis accuracy fault diagnosis and reduce computational effort, a self-attention layer is introduced after feature extraction to selectively strengthen the valid information of the features. Subsequently, the performance of the approach is demonstrated on the bearing dataset of KAt-DataCenter. Finally, the effectiveness of multi-dimension input and the superiority of the self-attention mechanism are verified through comparative experiments." @default.
- W4386088258 created "2023-08-24" @default.
- W4386088258 creator A5015520407 @default.
- W4386088258 creator A5016145836 @default.
- W4386088258 creator A5020568580 @default.
- W4386088258 creator A5050373298 @default.
- W4386088258 date "2023-01-01" @default.
- W4386088258 modified "2023-09-26" @default.
- W4386088258 title "Bearing Fault Diagnosis Using 1D-CNN Combined with Multi-Dimensional Input and Self-Attention Mechanism" @default.
- W4386088258 cites W1964671517 @default.
- W4386088258 cites W1972904341 @default.
- W4386088258 cites W2007200746 @default.
- W4386088258 cites W2128734408 @default.
- W4386088258 cites W2581853886 @default.
- W4386088258 cites W2768753204 @default.
- W4386088258 cites W2946530240 @default.
- W4386088258 cites W3005695061 @default.
- W4386088258 cites W3042706401 @default.
- W4386088258 cites W3094346685 @default.
- W4386088258 cites W3128054754 @default.
- W4386088258 cites W3197058104 @default.
- W4386088258 cites W4200049650 @default.
- W4386088258 doi "https://doi.org/10.1007/978-981-99-3408-9_73" @default.
- W4386088258 hasPublicationYear "2023" @default.
- W4386088258 type Work @default.
- W4386088258 citedByCount "0" @default.
- W4386088258 crossrefType "book-chapter" @default.
- W4386088258 hasAuthorship W4386088258A5015520407 @default.
- W4386088258 hasAuthorship W4386088258A5016145836 @default.
- W4386088258 hasAuthorship W4386088258A5020568580 @default.
- W4386088258 hasAuthorship W4386088258A5050373298 @default.
- W4386088258 hasConcept C111472728 @default.
- W4386088258 hasConcept C121332964 @default.
- W4386088258 hasConcept C127313418 @default.
- W4386088258 hasConcept C127413603 @default.
- W4386088258 hasConcept C138885662 @default.
- W4386088258 hasConcept C153180895 @default.
- W4386088258 hasConcept C154945302 @default.
- W4386088258 hasConcept C163258240 @default.
- W4386088258 hasConcept C165205528 @default.
- W4386088258 hasConcept C175551986 @default.
- W4386088258 hasConcept C188441871 @default.
- W4386088258 hasConcept C199978012 @default.
- W4386088258 hasConcept C41008148 @default.
- W4386088258 hasConcept C43214815 @default.
- W4386088258 hasConcept C52622490 @default.
- W4386088258 hasConcept C62520636 @default.
- W4386088258 hasConcept C81363708 @default.
- W4386088258 hasConcept C89611455 @default.
- W4386088258 hasConcept C95623464 @default.
- W4386088258 hasConceptScore W4386088258C111472728 @default.
- W4386088258 hasConceptScore W4386088258C121332964 @default.
- W4386088258 hasConceptScore W4386088258C127313418 @default.
- W4386088258 hasConceptScore W4386088258C127413603 @default.
- W4386088258 hasConceptScore W4386088258C138885662 @default.
- W4386088258 hasConceptScore W4386088258C153180895 @default.
- W4386088258 hasConceptScore W4386088258C154945302 @default.
- W4386088258 hasConceptScore W4386088258C163258240 @default.
- W4386088258 hasConceptScore W4386088258C165205528 @default.
- W4386088258 hasConceptScore W4386088258C175551986 @default.
- W4386088258 hasConceptScore W4386088258C188441871 @default.
- W4386088258 hasConceptScore W4386088258C199978012 @default.
- W4386088258 hasConceptScore W4386088258C41008148 @default.
- W4386088258 hasConceptScore W4386088258C43214815 @default.
- W4386088258 hasConceptScore W4386088258C52622490 @default.
- W4386088258 hasConceptScore W4386088258C62520636 @default.
- W4386088258 hasConceptScore W4386088258C81363708 @default.
- W4386088258 hasConceptScore W4386088258C89611455 @default.
- W4386088258 hasConceptScore W4386088258C95623464 @default.
- W4386088258 hasLocation W43860882581 @default.
- W4386088258 hasOpenAccess W4386088258 @default.
- W4386088258 hasPrimaryLocation W43860882581 @default.
- W4386088258 hasRelatedWork W2743258233 @default.
- W4386088258 hasRelatedWork W2771515600 @default.
- W4386088258 hasRelatedWork W2807311372 @default.
- W4386088258 hasRelatedWork W2811390910 @default.
- W4386088258 hasRelatedWork W2900180889 @default.
- W4386088258 hasRelatedWork W3093842373 @default.
- W4386088258 hasRelatedWork W3120400911 @default.
- W4386088258 hasRelatedWork W3208883981 @default.
- W4386088258 hasRelatedWork W4307834408 @default.
- W4386088258 hasRelatedWork W4320925816 @default.
- W4386088258 isParatext "false" @default.
- W4386088258 isRetracted "false" @default.
- W4386088258 workType "book-chapter" @default.