Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386089049> ?p ?o ?g. }
- W4386089049 endingPage "106942" @default.
- W4386089049 startingPage "106942" @default.
- W4386089049 abstract "The article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer, Geometry-Aware Instance Segmentation, Shapemask, Synthetic Depth Mask RCNN, Synthetic Fusion Mask RCNN (SF-Mask), Unseen Object Instance Segmentation (UOIS), Unseen Object Clustering (UOC), and You Look Only At Coefficients, have been tested on various datasets. The results show that the best architectures for stacked elements segmentation are UOIS, SF-Mask, and UOC." @default.
- W4386089049 created "2023-08-24" @default.
- W4386089049 creator A5003329037 @default.
- W4386089049 creator A5076617603 @default.
- W4386089049 creator A5092678612 @default.
- W4386089049 date "2023-11-01" @default.
- W4386089049 modified "2023-10-07" @default.
- W4386089049 title "Instance segmentation of stack composed of unknown objects" @default.
- W4386089049 cites W2015159529 @default.
- W4386089049 cites W2037227137 @default.
- W4386089049 cites W2052594950 @default.
- W4386089049 cites W2592193412 @default.
- W4386089049 cites W2743627947 @default.
- W4386089049 cites W2786808285 @default.
- W4386089049 cites W2799406003 @default.
- W4386089049 cites W2809226111 @default.
- W4386089049 cites W2896348597 @default.
- W4386089049 cites W2906314281 @default.
- W4386089049 cites W2912327653 @default.
- W4386089049 cites W2916412824 @default.
- W4386089049 cites W2920946673 @default.
- W4386089049 cites W2928182459 @default.
- W4386089049 cites W2985331920 @default.
- W4386089049 cites W2991979976 @default.
- W4386089049 cites W2995932445 @default.
- W4386089049 cites W3003771980 @default.
- W4386089049 cites W3004996399 @default.
- W4386089049 cites W3026575546 @default.
- W4386089049 cites W3033492597 @default.
- W4386089049 cites W3035665735 @default.
- W4386089049 cites W3047353520 @default.
- W4386089049 cites W3110908156 @default.
- W4386089049 cites W3132455321 @default.
- W4386089049 cites W3139745482 @default.
- W4386089049 cites W3163289297 @default.
- W4386089049 cites W3173432908 @default.
- W4386089049 cites W3176880348 @default.
- W4386089049 cites W3183806564 @default.
- W4386089049 cites W3212645988 @default.
- W4386089049 cites W4206573688 @default.
- W4386089049 cites W4211244138 @default.
- W4386089049 cites W4212848489 @default.
- W4386089049 cites W4308385799 @default.
- W4386089049 cites W4310222641 @default.
- W4386089049 doi "https://doi.org/10.1016/j.engappai.2023.106942" @default.
- W4386089049 hasPublicationYear "2023" @default.
- W4386089049 type Work @default.
- W4386089049 citedByCount "0" @default.
- W4386089049 crossrefType "journal-article" @default.
- W4386089049 hasAuthorship W4386089049A5003329037 @default.
- W4386089049 hasAuthorship W4386089049A5076617603 @default.
- W4386089049 hasAuthorship W4386089049A5092678612 @default.
- W4386089049 hasBestOaLocation W43860890491 @default.
- W4386089049 hasConcept C121332964 @default.
- W4386089049 hasConcept C124504099 @default.
- W4386089049 hasConcept C153180895 @default.
- W4386089049 hasConcept C154945302 @default.
- W4386089049 hasConcept C165801399 @default.
- W4386089049 hasConcept C25694479 @default.
- W4386089049 hasConcept C2781238097 @default.
- W4386089049 hasConcept C2984842247 @default.
- W4386089049 hasConcept C31972630 @default.
- W4386089049 hasConcept C41008148 @default.
- W4386089049 hasConcept C50644808 @default.
- W4386089049 hasConcept C62520636 @default.
- W4386089049 hasConcept C65885262 @default.
- W4386089049 hasConcept C66322947 @default.
- W4386089049 hasConcept C73555534 @default.
- W4386089049 hasConcept C89600930 @default.
- W4386089049 hasConceptScore W4386089049C121332964 @default.
- W4386089049 hasConceptScore W4386089049C124504099 @default.
- W4386089049 hasConceptScore W4386089049C153180895 @default.
- W4386089049 hasConceptScore W4386089049C154945302 @default.
- W4386089049 hasConceptScore W4386089049C165801399 @default.
- W4386089049 hasConceptScore W4386089049C25694479 @default.
- W4386089049 hasConceptScore W4386089049C2781238097 @default.
- W4386089049 hasConceptScore W4386089049C2984842247 @default.
- W4386089049 hasConceptScore W4386089049C31972630 @default.
- W4386089049 hasConceptScore W4386089049C41008148 @default.
- W4386089049 hasConceptScore W4386089049C50644808 @default.
- W4386089049 hasConceptScore W4386089049C62520636 @default.
- W4386089049 hasConceptScore W4386089049C65885262 @default.
- W4386089049 hasConceptScore W4386089049C66322947 @default.
- W4386089049 hasConceptScore W4386089049C73555534 @default.
- W4386089049 hasConceptScore W4386089049C89600930 @default.
- W4386089049 hasFunder F4320320300 @default.
- W4386089049 hasFunder F4320335039 @default.
- W4386089049 hasFunder F4320335322 @default.
- W4386089049 hasLocation W43860890491 @default.
- W4386089049 hasOpenAccess W4386089049 @default.
- W4386089049 hasPrimaryLocation W43860890491 @default.
- W4386089049 hasRelatedWork W1999008862 @default.
- W4386089049 hasRelatedWork W2103507220 @default.
- W4386089049 hasRelatedWork W2185902295 @default.
- W4386089049 hasRelatedWork W2371519352 @default.
- W4386089049 hasRelatedWork W2386644571 @default.
- W4386089049 hasRelatedWork W2551987074 @default.
- W4386089049 hasRelatedWork W2785294226 @default.