Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386089717> ?p ?o ?g. }
- W4386089717 endingPage "125117" @default.
- W4386089717 startingPage "125117" @default.
- W4386089717 abstract "Abstract The increase in the number of channels for extracting bearing fault features can to some extent enhance diagnostic performance. Therefore, this article proposes a SENet (squeeze and excitation network)—TSCNN (two flow convolutional neural network) model with high accuracy and generalization characteristics for fault diagnosis of rolling bearings. Firstly, use convolutional pooling layers to construct a basic diagnostic model framework. Secondly, due to the unsatisfactory performance of feature extraction solely on one-dimensional frequency domain signals or two-dimensional time-frequency signals, there may be misjudgments. Therefore, a dual stream convolutional model is integrated to process both one-dimensional and two-dimensional data. Fast Fourier transform is used to process one-dimensional frequency domain data, and continuous wavelet transform is used to process two-dimensional time-frequency maps. Once again, integrating the SENet module into the dual stream diagnostic model, the addition of attention mechanism can enable the model to better understand key features of input data. Finally, the data obtained from the processing of two channels is fused and classified in the Softmax layer. This article uses the rolling bearing fault standard data from Case Western Reserve University and the American Society for Mechanical Fault Prevention Technology, and verifies through multiple controlled experiments that the model established in this article has high accuracy and good generalization characteristics." @default.
- W4386089717 created "2023-08-24" @default.
- W4386089717 creator A5002061763 @default.
- W4386089717 creator A5019309851 @default.
- W4386089717 creator A5044273453 @default.
- W4386089717 creator A5047649726 @default.
- W4386089717 date "2023-09-01" @default.
- W4386089717 modified "2023-09-26" @default.
- W4386089717 title "A SENet-TSCNN model developed for fault diagnosis considering squeeze-excitation networks and two-stream feature fusion" @default.
- W4386089717 cites W2061171222 @default.
- W4386089717 cites W243674440 @default.
- W4386089717 cites W2792191775 @default.
- W4386089717 cites W2803978172 @default.
- W4386089717 cites W2898505776 @default.
- W4386089717 cites W2947975283 @default.
- W4386089717 cites W2966008650 @default.
- W4386089717 cites W2971524931 @default.
- W4386089717 cites W3004647970 @default.
- W4386089717 cites W3045546070 @default.
- W4386089717 cites W3092595265 @default.
- W4386089717 cites W3103574138 @default.
- W4386089717 cites W3126242280 @default.
- W4386089717 cites W3127704386 @default.
- W4386089717 cites W3138065964 @default.
- W4386089717 cites W3139302692 @default.
- W4386089717 cites W3159442541 @default.
- W4386089717 cites W3164543983 @default.
- W4386089717 cites W3171574757 @default.
- W4386089717 cites W3182139844 @default.
- W4386089717 cites W3185168598 @default.
- W4386089717 cites W3193002911 @default.
- W4386089717 cites W3194431884 @default.
- W4386089717 cites W3205236189 @default.
- W4386089717 cites W3216333129 @default.
- W4386089717 cites W4200221661 @default.
- W4386089717 cites W4200484503 @default.
- W4386089717 cites W4205500943 @default.
- W4386089717 cites W4210263531 @default.
- W4386089717 cites W4224028984 @default.
- W4386089717 cites W4224290096 @default.
- W4386089717 cites W4281636018 @default.
- W4386089717 cites W4283798077 @default.
- W4386089717 cites W4292056136 @default.
- W4386089717 cites W4297988347 @default.
- W4386089717 cites W4306181514 @default.
- W4386089717 cites W4309110569 @default.
- W4386089717 cites W4309809330 @default.
- W4386089717 cites W4323840379 @default.
- W4386089717 cites W4366976518 @default.
- W4386089717 doi "https://doi.org/10.1088/1361-6501/acf335" @default.
- W4386089717 hasPublicationYear "2023" @default.
- W4386089717 type Work @default.
- W4386089717 citedByCount "0" @default.
- W4386089717 crossrefType "journal-article" @default.
- W4386089717 hasAuthorship W4386089717A5002061763 @default.
- W4386089717 hasAuthorship W4386089717A5019309851 @default.
- W4386089717 hasAuthorship W4386089717A5044273453 @default.
- W4386089717 hasAuthorship W4386089717A5047649726 @default.
- W4386089717 hasConcept C111919701 @default.
- W4386089717 hasConcept C11413529 @default.
- W4386089717 hasConcept C124101348 @default.
- W4386089717 hasConcept C127313418 @default.
- W4386089717 hasConcept C134306372 @default.
- W4386089717 hasConcept C138885662 @default.
- W4386089717 hasConcept C153180895 @default.
- W4386089717 hasConcept C154945302 @default.
- W4386089717 hasConcept C165205528 @default.
- W4386089717 hasConcept C175551986 @default.
- W4386089717 hasConcept C177148314 @default.
- W4386089717 hasConcept C188441871 @default.
- W4386089717 hasConcept C19118579 @default.
- W4386089717 hasConcept C2776401178 @default.
- W4386089717 hasConcept C2778484313 @default.
- W4386089717 hasConcept C31972630 @default.
- W4386089717 hasConcept C33923547 @default.
- W4386089717 hasConcept C41008148 @default.
- W4386089717 hasConcept C41895202 @default.
- W4386089717 hasConcept C47432892 @default.
- W4386089717 hasConcept C76155785 @default.
- W4386089717 hasConcept C81363708 @default.
- W4386089717 hasConcept C98045186 @default.
- W4386089717 hasConceptScore W4386089717C111919701 @default.
- W4386089717 hasConceptScore W4386089717C11413529 @default.
- W4386089717 hasConceptScore W4386089717C124101348 @default.
- W4386089717 hasConceptScore W4386089717C127313418 @default.
- W4386089717 hasConceptScore W4386089717C134306372 @default.
- W4386089717 hasConceptScore W4386089717C138885662 @default.
- W4386089717 hasConceptScore W4386089717C153180895 @default.
- W4386089717 hasConceptScore W4386089717C154945302 @default.
- W4386089717 hasConceptScore W4386089717C165205528 @default.
- W4386089717 hasConceptScore W4386089717C175551986 @default.
- W4386089717 hasConceptScore W4386089717C177148314 @default.
- W4386089717 hasConceptScore W4386089717C188441871 @default.
- W4386089717 hasConceptScore W4386089717C19118579 @default.
- W4386089717 hasConceptScore W4386089717C2776401178 @default.
- W4386089717 hasConceptScore W4386089717C2778484313 @default.
- W4386089717 hasConceptScore W4386089717C31972630 @default.
- W4386089717 hasConceptScore W4386089717C33923547 @default.