Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386090691> ?p ?o ?g. }
- W4386090691 abstract "Abstract Although causal evidence synthesis is critical for the policy sciences – whether it be analysis for policy or analysis of policy – its repeatable, systematic, and transparent execution remains challenging due to the growing volume, variety, and velocity of policy-relevant evidence generation as well as the complex web of relationships within which policies are usually situated. To address these shortcomings, we developed a novel, semi-automated approach to synthesizing causal evidence from policy-relevant documents. Specifically, we propose the use of natural language processing (NLP) for the extraction of causal evidence and subsequent homogenization or normalization of the varied text, causal mapping for the collation, visualization, and summarization of complex interdependencies within the policy system, and graph analytics for further investigation of the structure and dynamics of the causal map. We illustrate this approach by applying it to a collection of 28 articles on the emissions trading scheme (ETS), a policy instrument of increasing importance for climate change mitigation. In all, we find 300 variables and 284 cause-effect pairs in our input dataset (consisting of 4524 sentences), which are reduced to 70 unique variables and 119 cause-effect pairs after normalization. We create a causal map depicting these and analyze it subsequently to obtain systemic perspective as well as policy-relevant insight on the ETS that is broadly consistent with select manually conducted, previous meta-reviews of the policy instrument. We conclude that, despite its present limitations, this approach can help synthesize causal evidence for policy analysis, policymaking, and policy research." @default.
- W4386090691 created "2023-08-24" @default.
- W4386090691 creator A5018376128 @default.
- W4386090691 creator A5032888392 @default.
- W4386090691 creator A5035205424 @default.
- W4386090691 creator A5072017755 @default.
- W4386090691 date "2023-08-23" @default.
- W4386090691 modified "2023-09-26" @default.
- W4386090691 title "A semi-automated approach to policy-relevant evidence synthesis: Combining natural language processing, causal mapping, and graph analytics for public policy" @default.
- W4386090691 cites W1552900563 @default.
- W4386090691 cites W1907286193 @default.
- W4386090691 cites W1913120773 @default.
- W4386090691 cites W1964172790 @default.
- W4386090691 cites W1978752465 @default.
- W4386090691 cites W1986749693 @default.
- W4386090691 cites W1987933531 @default.
- W4386090691 cites W1999027030 @default.
- W4386090691 cites W2027121083 @default.
- W4386090691 cites W2033578167 @default.
- W4386090691 cites W2035581897 @default.
- W4386090691 cites W2040126491 @default.
- W4386090691 cites W2043951942 @default.
- W4386090691 cites W2057954853 @default.
- W4386090691 cites W2059194835 @default.
- W4386090691 cites W2061535067 @default.
- W4386090691 cites W2062046281 @default.
- W4386090691 cites W2066480210 @default.
- W4386090691 cites W2068075745 @default.
- W4386090691 cites W2070017138 @default.
- W4386090691 cites W2096504109 @default.
- W4386090691 cites W2099397590 @default.
- W4386090691 cites W2106560678 @default.
- W4386090691 cites W2109305774 @default.
- W4386090691 cites W2114178600 @default.
- W4386090691 cites W2116859139 @default.
- W4386090691 cites W2120732572 @default.
- W4386090691 cites W2121914734 @default.
- W4386090691 cites W2146130956 @default.
- W4386090691 cites W2162758154 @default.
- W4386090691 cites W2168209463 @default.
- W4386090691 cites W2171193983 @default.
- W4386090691 cites W2180312923 @default.
- W4386090691 cites W2236800686 @default.
- W4386090691 cites W2274799450 @default.
- W4386090691 cites W2344290876 @default.
- W4386090691 cites W2352132029 @default.
- W4386090691 cites W2395154047 @default.
- W4386090691 cites W2400538741 @default.
- W4386090691 cites W2439538439 @default.
- W4386090691 cites W2522622892 @default.
- W4386090691 cites W2560678823 @default.
- W4386090691 cites W2563962321 @default.
- W4386090691 cites W2583696759 @default.
- W4386090691 cites W2767214796 @default.
- W4386090691 cites W2767799137 @default.
- W4386090691 cites W2792027006 @default.
- W4386090691 cites W2801899866 @default.
- W4386090691 cites W2884633725 @default.
- W4386090691 cites W2905213792 @default.
- W4386090691 cites W2913663231 @default.
- W4386090691 cites W2937815589 @default.
- W4386090691 cites W2951317979 @default.
- W4386090691 cites W2953997642 @default.
- W4386090691 cites W2970771982 @default.
- W4386090691 cites W2970778761 @default.
- W4386090691 cites W2973150412 @default.
- W4386090691 cites W2982515141 @default.
- W4386090691 cites W2995180635 @default.
- W4386090691 cites W2995323474 @default.
- W4386090691 cites W3010795244 @default.
- W4386090691 cites W3014509841 @default.
- W4386090691 cites W3020932749 @default.
- W4386090691 cites W3023805712 @default.
- W4386090691 cites W3036915813 @default.
- W4386090691 cites W3092419658 @default.
- W4386090691 cites W3118647971 @default.
- W4386090691 cites W3121811420 @default.
- W4386090691 cites W3122993978 @default.
- W4386090691 cites W3123132961 @default.
- W4386090691 cites W3123986673 @default.
- W4386090691 cites W3125429581 @default.
- W4386090691 cites W3125732956 @default.
- W4386090691 cites W3128349626 @default.
- W4386090691 cites W3128465392 @default.
- W4386090691 cites W3144194608 @default.
- W4386090691 cites W3186011512 @default.
- W4386090691 cites W3186276581 @default.
- W4386090691 cites W3199853562 @default.
- W4386090691 cites W3203243032 @default.
- W4386090691 cites W3216898476 @default.
- W4386090691 cites W4211059094 @default.
- W4386090691 cites W4285202121 @default.
- W4386090691 cites W4300838713 @default.
- W4386090691 cites W4302428417 @default.
- W4386090691 cites W4376125918 @default.
- W4386090691 doi "https://doi.org/10.21203/rs.3.rs-3285731/v1" @default.
- W4386090691 hasPublicationYear "2023" @default.
- W4386090691 type Work @default.
- W4386090691 citedByCount "0" @default.
- W4386090691 crossrefType "posted-content" @default.