Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386090951> ?p ?o ?g. }
- W4386090951 endingPage "e0000166" @default.
- W4386090951 startingPage "e0000166" @default.
- W4386090951 abstract "Microbial water quality is an integral to water security and is directly linked to human health, food safety, and ecosystem services. However, specifically pathogen data and even faecal indicator data (e.g., E . coli ), are sparse and scattered, and their availability in different water bodies (e.g., groundwater) and in different socio-economic contexts (e.g., low- and middle-income countries) are inequitable. There is an urgent need to assess and collate microbial data across the world to evaluate the global state of ambient water quality, water treatment, and health risk, as time is running out to meet Sustainable Development Goal (SDG) 6 by 2030. The overall goal of this paper is to illustrate the need and advocate for building a robust and useful microbial water quality database and consortium worldwide that will help achieve SDG 6. We summarize available data and existing databases on microbial water quality, discuss methods for producing new data on microbial water quality, and identify models and analytical tools that utilize microbial data to support decision making. This review identified global datasets (7 databases), and regional datasets for Africa (3 databases), Australia/New Zealand (6 databases), Asia (3 databases), Europe (7 databases), North America (12 databases) and South America (1 database). Data are missing for low- and middle-income countries. Increased laboratory capacity (due to COVID-19 pandemic) and molecular tools can identify potential pollution sources and monitor directly for pathogens. Models and analytical tools can support microbial water quality assessment by making geospatial and temporal inferences where data are lacking. A genomics, information technology (IT), and data revolution is upon us and presents unprecedented opportunities to develop software and devices for real-time logging, automated analysis, standardization, and modelling of microbial data to strengthen knowledge of global water quality. These opportunities should be leveraged for achieving SDG 6 around the world." @default.
- W4386090951 created "2023-08-24" @default.
- W4386090951 creator A5006158517 @default.
- W4386090951 creator A5011218755 @default.
- W4386090951 creator A5013631651 @default.
- W4386090951 creator A5029643902 @default.
- W4386090951 creator A5031292185 @default.
- W4386090951 creator A5052658407 @default.
- W4386090951 creator A5082048430 @default.
- W4386090951 creator A5083906163 @default.
- W4386090951 date "2023-08-23" @default.
- W4386090951 modified "2023-09-26" @default.
- W4386090951 title "Global microbial water quality data and predictive analytics: Key to health and meeting SDG 6" @default.
- W4386090951 cites W1506517063 @default.
- W4386090951 cites W1510377935 @default.
- W4386090951 cites W1580392150 @default.
- W4386090951 cites W1692465622 @default.
- W4386090951 cites W1964656653 @default.
- W4386090951 cites W2014265892 @default.
- W4386090951 cites W2017069546 @default.
- W4386090951 cites W2048772328 @default.
- W4386090951 cites W2049367012 @default.
- W4386090951 cites W2061124054 @default.
- W4386090951 cites W2064773824 @default.
- W4386090951 cites W2074434454 @default.
- W4386090951 cites W2075255587 @default.
- W4386090951 cites W2087988446 @default.
- W4386090951 cites W2110533085 @default.
- W4386090951 cites W2124106031 @default.
- W4386090951 cites W2142240803 @default.
- W4386090951 cites W2149409488 @default.
- W4386090951 cites W2182186218 @default.
- W4386090951 cites W2182688854 @default.
- W4386090951 cites W2302501749 @default.
- W4386090951 cites W2327884547 @default.
- W4386090951 cites W2343867406 @default.
- W4386090951 cites W2463131608 @default.
- W4386090951 cites W2733214833 @default.
- W4386090951 cites W2793431487 @default.
- W4386090951 cites W2796918986 @default.
- W4386090951 cites W2801024837 @default.
- W4386090951 cites W2843079095 @default.
- W4386090951 cites W2898068306 @default.
- W4386090951 cites W2899440564 @default.
- W4386090951 cites W2951496781 @default.
- W4386090951 cites W2963854832 @default.
- W4386090951 cites W2973226599 @default.
- W4386090951 cites W2984222496 @default.
- W4386090951 cites W2990381466 @default.
- W4386090951 cites W3013843415 @default.
- W4386090951 cites W3035541045 @default.
- W4386090951 cites W3082066822 @default.
- W4386090951 cites W3082616707 @default.
- W4386090951 cites W3085939618 @default.
- W4386090951 cites W3097240027 @default.
- W4386090951 cites W3137410161 @default.
- W4386090951 cites W3183999083 @default.
- W4386090951 cites W3185002827 @default.
- W4386090951 cites W3193447065 @default.
- W4386090951 cites W3194396378 @default.
- W4386090951 cites W3198912861 @default.
- W4386090951 cites W3209034724 @default.
- W4386090951 cites W4281389514 @default.
- W4386090951 cites W4281626156 @default.
- W4386090951 cites W4293109668 @default.
- W4386090951 cites W4293192001 @default.
- W4386090951 cites W4304143729 @default.
- W4386090951 cites W4315778613 @default.
- W4386090951 doi "https://doi.org/10.1371/journal.pwat.0000166" @default.
- W4386090951 hasPublicationYear "2023" @default.
- W4386090951 type Work @default.
- W4386090951 citedByCount "0" @default.
- W4386090951 crossrefType "journal-article" @default.
- W4386090951 hasAuthorship W4386090951A5006158517 @default.
- W4386090951 hasAuthorship W4386090951A5011218755 @default.
- W4386090951 hasAuthorship W4386090951A5013631651 @default.
- W4386090951 hasAuthorship W4386090951A5029643902 @default.
- W4386090951 hasAuthorship W4386090951A5031292185 @default.
- W4386090951 hasAuthorship W4386090951A5052658407 @default.
- W4386090951 hasAuthorship W4386090951A5082048430 @default.
- W4386090951 hasAuthorship W4386090951A5083906163 @default.
- W4386090951 hasBestOaLocation W43860909511 @default.
- W4386090951 hasConcept C111472728 @default.
- W4386090951 hasConcept C138885662 @default.
- W4386090951 hasConcept C144133560 @default.
- W4386090951 hasConcept C153823671 @default.
- W4386090951 hasConcept C162853370 @default.
- W4386090951 hasConcept C176217482 @default.
- W4386090951 hasConcept C18903297 @default.
- W4386090951 hasConcept C205649164 @default.
- W4386090951 hasConcept C24756922 @default.
- W4386090951 hasConcept C2522767166 @default.
- W4386090951 hasConcept C2778570914 @default.
- W4386090951 hasConcept C2779530757 @default.
- W4386090951 hasConcept C2780797713 @default.
- W4386090951 hasConcept C41008148 @default.
- W4386090951 hasConcept C62649853 @default.
- W4386090951 hasConcept C77088390 @default.