Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386092707> ?p ?o ?g. }
- W4386092707 endingPage "2027" @default.
- W4386092707 startingPage "1995" @default.
- W4386092707 abstract "The global population nowadays is severely affected by various diseases of the soft tissue organs caused mainly because of some infection, heredity, change of lifestyle, etc. The timely detection and accurate diagnosis of these health conditions are of utmost importance in order to improve the chances of recovery and survival. Many medical imaging modalities have proven to effectively diagnose these diseases and their progression in a noninvasive way. Out of all the available modalities, ultrasound is the preferred mode of examination for imaging soft tissue organs for disease prediction because of its ease of use, low cost, portability, and lack of ionizing radiation. The radiologists manually study these scans for making an accurate diagnosis of the underlying condition. However, ultrasound imaging is highly operator-dependent and its effectiveness is adversely affected because of the presence of speckle noise. Therefore, to overcome these issues and for an efficient disease diagnosis, different computer-aided diagnostic (CAD) systems have been developed by researchers using artificial intelligence techniques along with the metrological characteristics of the diseased part as visible on the ultrasound scan of the organ under study. The main purpose of the present chapter is to shed light on the different types of diseases that affect the soft tissue organs like kidney, liver, thyroid, breast and their sonographic appearances, and characteristics. The chapter further describes methodologies developed in recent existing literature (year 2017 onwards) for the classification of diseases using ultrasound images of these organs through a CAD system using state-of-the-art deep learning and machine learning methods. The chapter also gives an insight into designing an efficient CAD system for the classification of breast tumors. The authors in the chapter have used nonsubsampled contourlet transform (NSCT) for multiresolution analysis of the original tumor images. From the subimages obtained using NSCT, extraction of texture features has been carried out using gray level co-occurrence matrix (GLCM), whereas shape features have been computed from the preprocessed tumor images. The computed feature set (texture + shape) has been used for classifying breast tumors using an adaptive neuro-fuzzy classifier with linguistic hedges (ANFC-LH) classifier based on the optimal features selected on the basis of the hedge values associated with the fuzzy rules." @default.
- W4386092707 created "2023-08-24" @default.
- W4386092707 creator A5016978695 @default.
- W4386092707 creator A5029771009 @default.
- W4386092707 date "2023-01-01" @default.
- W4386092707 modified "2023-10-01" @default.
- W4386092707 title "Use of Metrological Characteristics in Ultrasound Imaging and Artificial Intelligence Techniques for Disease Prediction in Soft Tissue Organs" @default.
- W4386092707 cites W1970984602 @default.
- W4386092707 cites W1985440520 @default.
- W4386092707 cites W1995446722 @default.
- W4386092707 cites W2007440415 @default.
- W4386092707 cites W2014859876 @default.
- W4386092707 cites W2027685755 @default.
- W4386092707 cites W2075442093 @default.
- W4386092707 cites W2106002835 @default.
- W4386092707 cites W2116040950 @default.
- W4386092707 cites W2117853853 @default.
- W4386092707 cites W2136473316 @default.
- W4386092707 cites W2141614013 @default.
- W4386092707 cites W2155674415 @default.
- W4386092707 cites W2158698691 @default.
- W4386092707 cites W2160213464 @default.
- W4386092707 cites W2180927083 @default.
- W4386092707 cites W2336769953 @default.
- W4386092707 cites W2518674481 @default.
- W4386092707 cites W2570420153 @default.
- W4386092707 cites W2576365627 @default.
- W4386092707 cites W2735666957 @default.
- W4386092707 cites W2768211101 @default.
- W4386092707 cites W2782276827 @default.
- W4386092707 cites W2793712525 @default.
- W4386092707 cites W2800633985 @default.
- W4386092707 cites W2804006452 @default.
- W4386092707 cites W2871338759 @default.
- W4386092707 cites W2883894423 @default.
- W4386092707 cites W2884405614 @default.
- W4386092707 cites W2888322570 @default.
- W4386092707 cites W2895232172 @default.
- W4386092707 cites W2897224195 @default.
- W4386092707 cites W2900594567 @default.
- W4386092707 cites W2901188778 @default.
- W4386092707 cites W2910246687 @default.
- W4386092707 cites W2917207358 @default.
- W4386092707 cites W2925108462 @default.
- W4386092707 cites W2932919600 @default.
- W4386092707 cites W2939142770 @default.
- W4386092707 cites W2967450961 @default.
- W4386092707 cites W2969822717 @default.
- W4386092707 cites W2971403019 @default.
- W4386092707 cites W2972631344 @default.
- W4386092707 cites W2980978803 @default.
- W4386092707 cites W3011266529 @default.
- W4386092707 cites W3013244916 @default.
- W4386092707 cites W3013620532 @default.
- W4386092707 cites W3044053425 @default.
- W4386092707 cites W3081114420 @default.
- W4386092707 cites W3092554344 @default.
- W4386092707 cites W3095670364 @default.
- W4386092707 cites W3095900180 @default.
- W4386092707 cites W3112494578 @default.
- W4386092707 cites W3124278033 @default.
- W4386092707 cites W3161833042 @default.
- W4386092707 cites W3162357183 @default.
- W4386092707 cites W3172781323 @default.
- W4386092707 cites W3175773867 @default.
- W4386092707 cites W4233537775 @default.
- W4386092707 doi "https://doi.org/10.1007/978-981-99-2074-7_132" @default.
- W4386092707 hasPublicationYear "2023" @default.
- W4386092707 type Work @default.
- W4386092707 citedByCount "0" @default.
- W4386092707 crossrefType "book-chapter" @default.
- W4386092707 hasAuthorship W4386092707A5016978695 @default.
- W4386092707 hasAuthorship W4386092707A5029771009 @default.
- W4386092707 hasConcept C126838900 @default.
- W4386092707 hasConcept C136948725 @default.
- W4386092707 hasConcept C143753070 @default.
- W4386092707 hasConcept C144024400 @default.
- W4386092707 hasConcept C154945302 @default.
- W4386092707 hasConcept C19527891 @default.
- W4386092707 hasConcept C2778236049 @default.
- W4386092707 hasConcept C2779903281 @default.
- W4386092707 hasConcept C2908647359 @default.
- W4386092707 hasConcept C31601959 @default.
- W4386092707 hasConcept C36289849 @default.
- W4386092707 hasConcept C41008148 @default.
- W4386092707 hasConcept C71924100 @default.
- W4386092707 hasConcept C99454951 @default.
- W4386092707 hasConceptScore W4386092707C126838900 @default.
- W4386092707 hasConceptScore W4386092707C136948725 @default.
- W4386092707 hasConceptScore W4386092707C143753070 @default.
- W4386092707 hasConceptScore W4386092707C144024400 @default.
- W4386092707 hasConceptScore W4386092707C154945302 @default.
- W4386092707 hasConceptScore W4386092707C19527891 @default.
- W4386092707 hasConceptScore W4386092707C2778236049 @default.
- W4386092707 hasConceptScore W4386092707C2779903281 @default.
- W4386092707 hasConceptScore W4386092707C2908647359 @default.
- W4386092707 hasConceptScore W4386092707C31601959 @default.
- W4386092707 hasConceptScore W4386092707C36289849 @default.