Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386093921> ?p ?o ?g. }
- W4386093921 endingPage "107702" @default.
- W4386093921 startingPage "107702" @default.
- W4386093921 abstract "Histopathological images of colorectal liver metastases (CRLM) contain rich morphometric information that may predict patients' outcomes. However, to our knowledge, no study has reported any practical deep learning framework based on the histology images of CRLM, and their direct association with prognosis remains largely unknown. In this study, we developed a deep learning-based framework for fully automated tissue classification and quantification of clinically relevant spatial organization features (SOFs) in H&E-stained images of CRLM. The SOFs based risk-scoring system demonstrated a strong and robust prognostic value that is independent of the current clinical risk score (CRS) system in independent clinical cohorts. Our framework enables fully automated tissue classification of H&E images of CRLM, which could significantly reduce assessment subjectivity and the workload of pathologists. The risk-scoring system provides a time- and cost-efficient tool to assist clinical decision-making for patients with CRLM, which could potentially be implemented in clinical practice." @default.
- W4386093921 created "2023-08-24" @default.
- W4386093921 creator A5005670014 @default.
- W4386093921 creator A5006827480 @default.
- W4386093921 creator A5015184109 @default.
- W4386093921 creator A5016439770 @default.
- W4386093921 creator A5023961880 @default.
- W4386093921 creator A5028640312 @default.
- W4386093921 creator A5047273213 @default.
- W4386093921 creator A5057105482 @default.
- W4386093921 creator A5058623407 @default.
- W4386093921 creator A5075075920 @default.
- W4386093921 creator A5079480117 @default.
- W4386093921 creator A5083012578 @default.
- W4386093921 creator A5084407437 @default.
- W4386093921 creator A5085627701 @default.
- W4386093921 creator A5090993403 @default.
- W4386093921 date "2023-10-01" @default.
- W4386093921 modified "2023-10-15" @default.
- W4386093921 title "Deep learning-derived spatial organization features on histology images predicts prognosis in colorectal liver metastasis patients after hepatectomy" @default.
- W4386093921 cites W1531237901 @default.
- W4386093921 cites W1938027614 @default.
- W4386093921 cites W2011832962 @default.
- W4386093921 cites W2042437331 @default.
- W4386093921 cites W2079641633 @default.
- W4386093921 cites W2084470612 @default.
- W4386093921 cites W2114586150 @default.
- W4386093921 cites W2120599579 @default.
- W4386093921 cites W2122378536 @default.
- W4386093921 cites W2144047768 @default.
- W4386093921 cites W2144326782 @default.
- W4386093921 cites W2169653318 @default.
- W4386093921 cites W2312404985 @default.
- W4386093921 cites W2435090885 @default.
- W4386093921 cites W2533236332 @default.
- W4386093921 cites W2748065364 @default.
- W4386093921 cites W2761998606 @default.
- W4386093921 cites W2792406865 @default.
- W4386093921 cites W2793350103 @default.
- W4386093921 cites W2803281998 @default.
- W4386093921 cites W2883420771 @default.
- W4386093921 cites W2904068706 @default.
- W4386093921 cites W2909089746 @default.
- W4386093921 cites W2914568698 @default.
- W4386093921 cites W2923245895 @default.
- W4386093921 cites W2941469215 @default.
- W4386093921 cites W2963433607 @default.
- W4386093921 cites W2981358604 @default.
- W4386093921 cites W2987342757 @default.
- W4386093921 cites W2996480032 @default.
- W4386093921 cites W2998794254 @default.
- W4386093921 cites W3004053956 @default.
- W4386093921 cites W3007100994 @default.
- W4386093921 cites W3026205722 @default.
- W4386093921 cites W3039674406 @default.
- W4386093921 cites W3040223271 @default.
- W4386093921 cites W3043602140 @default.
- W4386093921 cites W3049221994 @default.
- W4386093921 cites W3089090082 @default.
- W4386093921 cites W3090926208 @default.
- W4386093921 cites W3115442766 @default.
- W4386093921 cites W3128646645 @default.
- W4386093921 cites W3131526166 @default.
- W4386093921 cites W3136646547 @default.
- W4386093921 cites W3156579229 @default.
- W4386093921 cites W3165777218 @default.
- W4386093921 cites W4237324704 @default.
- W4386093921 cites W573963400 @default.
- W4386093921 doi "https://doi.org/10.1016/j.isci.2023.107702" @default.
- W4386093921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37701575" @default.
- W4386093921 hasPublicationYear "2023" @default.
- W4386093921 type Work @default.
- W4386093921 citedByCount "0" @default.
- W4386093921 crossrefType "journal-article" @default.
- W4386093921 hasAuthorship W4386093921A5005670014 @default.
- W4386093921 hasAuthorship W4386093921A5006827480 @default.
- W4386093921 hasAuthorship W4386093921A5015184109 @default.
- W4386093921 hasAuthorship W4386093921A5016439770 @default.
- W4386093921 hasAuthorship W4386093921A5023961880 @default.
- W4386093921 hasAuthorship W4386093921A5028640312 @default.
- W4386093921 hasAuthorship W4386093921A5047273213 @default.
- W4386093921 hasAuthorship W4386093921A5057105482 @default.
- W4386093921 hasAuthorship W4386093921A5058623407 @default.
- W4386093921 hasAuthorship W4386093921A5075075920 @default.
- W4386093921 hasAuthorship W4386093921A5079480117 @default.
- W4386093921 hasAuthorship W4386093921A5083012578 @default.
- W4386093921 hasAuthorship W4386093921A5084407437 @default.
- W4386093921 hasAuthorship W4386093921A5085627701 @default.
- W4386093921 hasAuthorship W4386093921A5090993403 @default.
- W4386093921 hasBestOaLocation W43860939211 @default.
- W4386093921 hasConcept C108583219 @default.
- W4386093921 hasConcept C111919701 @default.
- W4386093921 hasConcept C121608353 @default.
- W4386093921 hasConcept C126322002 @default.
- W4386093921 hasConcept C126838900 @default.
- W4386093921 hasConcept C141071460 @default.
- W4386093921 hasConcept C143998085 @default.
- W4386093921 hasConcept C154945302 @default.