Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386097323> ?p ?o ?g. }
- W4386097323 endingPage "1116" @default.
- W4386097323 startingPage "1098" @default.
- W4386097323 abstract "Solving aerosol dynamic models accurately to obtain the size distribution function is often computationally expensive. Conventional artificial neural network (ANN) models offer an alternative procedure to solve the aerosol dynamic equations. However, conventional ANN models can result in violation of aerosol mass conservation. To further enhance accuracy and reduce computational time, a hybrid ANN approach to solve the aerosol coagulation equation is developed, validated, and demonstrated. The methodology and assumptions for the development of the hybrid ANN model which provides an analytical closed form solution for aerosol coagulation is described. The ANN model is trained and validated using a dataset from an accurate sectional model. Following this, the hybrid ANN aerosol model is used to describe the evolution of aerosol in a furnace aerosol reactor. The hybrid ANN model results are compared to the accurate sectional and moment coagulation models. The hybrid ANN coagulation model prediction was found to accurately describe the evolution of the size distribution at a computational cost which is slightly more than the moment model but orders of magnitude less than the sectional model." @default.
- W4386097323 created "2023-08-24" @default.
- W4386097323 creator A5046411540 @default.
- W4386097323 creator A5065659737 @default.
- W4386097323 creator A5076708420 @default.
- W4386097323 creator A5082292904 @default.
- W4386097323 date "2023-09-14" @default.
- W4386097323 modified "2023-09-29" @default.
- W4386097323 title "A Machine Learning based Approach to Solve the Aerosol Dynamics Coagulation Model" @default.
- W4386097323 cites W1150033305 @default.
- W4386097323 cites W1971135930 @default.
- W4386097323 cites W1983772250 @default.
- W4386097323 cites W1984087004 @default.
- W4386097323 cites W1991081084 @default.
- W4386097323 cites W2008404657 @default.
- W4386097323 cites W2011560084 @default.
- W4386097323 cites W2019773833 @default.
- W4386097323 cites W2027197837 @default.
- W4386097323 cites W2040170042 @default.
- W4386097323 cites W2060544023 @default.
- W4386097323 cites W2077599247 @default.
- W4386097323 cites W2085749794 @default.
- W4386097323 cites W2117108919 @default.
- W4386097323 cites W2118032338 @default.
- W4386097323 cites W2118453582 @default.
- W4386097323 cites W2537651138 @default.
- W4386097323 cites W2802791016 @default.
- W4386097323 cites W2883827342 @default.
- W4386097323 cites W2903010511 @default.
- W4386097323 cites W2911964244 @default.
- W4386097323 cites W2938498349 @default.
- W4386097323 cites W2979916718 @default.
- W4386097323 cites W2994592523 @default.
- W4386097323 cites W3004272685 @default.
- W4386097323 cites W3016888713 @default.
- W4386097323 cites W3027863243 @default.
- W4386097323 cites W3040211378 @default.
- W4386097323 cites W3102231179 @default.
- W4386097323 cites W3171640905 @default.
- W4386097323 cites W3192880971 @default.
- W4386097323 cites W3199283050 @default.
- W4386097323 cites W3216208143 @default.
- W4386097323 cites W4226137842 @default.
- W4386097323 cites W4281391377 @default.
- W4386097323 cites W4283259725 @default.
- W4386097323 cites W4289878166 @default.
- W4386097323 cites W4311254633 @default.
- W4386097323 cites W4315642942 @default.
- W4386097323 cites W4318693420 @default.
- W4386097323 doi "https://doi.org/10.1080/02786826.2023.2249074" @default.
- W4386097323 hasPublicationYear "2023" @default.
- W4386097323 type Work @default.
- W4386097323 citedByCount "0" @default.
- W4386097323 crossrefType "journal-article" @default.
- W4386097323 hasAuthorship W4386097323A5046411540 @default.
- W4386097323 hasAuthorship W4386097323A5065659737 @default.
- W4386097323 hasAuthorship W4386097323A5076708420 @default.
- W4386097323 hasAuthorship W4386097323A5082292904 @default.
- W4386097323 hasConcept C11413529 @default.
- W4386097323 hasConcept C118552586 @default.
- W4386097323 hasConcept C121332964 @default.
- W4386097323 hasConcept C153294291 @default.
- W4386097323 hasConcept C154945302 @default.
- W4386097323 hasConcept C15744967 @default.
- W4386097323 hasConcept C179254644 @default.
- W4386097323 hasConcept C2778382381 @default.
- W4386097323 hasConcept C2779345167 @default.
- W4386097323 hasConcept C41008148 @default.
- W4386097323 hasConcept C50644808 @default.
- W4386097323 hasConcept C74650414 @default.
- W4386097323 hasConceptScore W4386097323C11413529 @default.
- W4386097323 hasConceptScore W4386097323C118552586 @default.
- W4386097323 hasConceptScore W4386097323C121332964 @default.
- W4386097323 hasConceptScore W4386097323C153294291 @default.
- W4386097323 hasConceptScore W4386097323C154945302 @default.
- W4386097323 hasConceptScore W4386097323C15744967 @default.
- W4386097323 hasConceptScore W4386097323C179254644 @default.
- W4386097323 hasConceptScore W4386097323C2778382381 @default.
- W4386097323 hasConceptScore W4386097323C2779345167 @default.
- W4386097323 hasConceptScore W4386097323C41008148 @default.
- W4386097323 hasConceptScore W4386097323C50644808 @default.
- W4386097323 hasConceptScore W4386097323C74650414 @default.
- W4386097323 hasIssue "11" @default.
- W4386097323 hasLocation W43860973231 @default.
- W4386097323 hasOpenAccess W4386097323 @default.
- W4386097323 hasPrimaryLocation W43860973231 @default.
- W4386097323 hasRelatedWork W1982948649 @default.
- W4386097323 hasRelatedWork W1987888223 @default.
- W4386097323 hasRelatedWork W1993459287 @default.
- W4386097323 hasRelatedWork W2071381270 @default.
- W4386097323 hasRelatedWork W2089031854 @default.
- W4386097323 hasRelatedWork W2377698510 @default.
- W4386097323 hasRelatedWork W2386387936 @default.
- W4386097323 hasRelatedWork W2386767533 @default.
- W4386097323 hasRelatedWork W2392110728 @default.
- W4386097323 hasRelatedWork W2886474217 @default.
- W4386097323 hasVolume "57" @default.
- W4386097323 isParatext "false" @default.