Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386098047> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4386098047 abstract "Abstract This investigation aimed to assess the effectiveness of different classification models in diagnosing prostate cancer using a screening dataset obtained from the National Cancer Institute’s Cancer Data Access System. The dataset was first reduced using the PCLDA method, which combines Principal Component Analysis and Linear Discriminant Analysis. Two classifiers, Support Vector Machine (SVM) and k-Nearest Neighbour (KNN), were then applied to compare their performance. The results showed that the PCLDA-SVM model achieved an impressive accuracy rate of 97.99%, with a precision of 0.92, sensitivity of 92.83%, specificity of 97.65%, and F1 score of 0.93. Additionally, it demonstrated a low error rate of 0.016 and a Matthews Correlation Coefficient (MCC) and Kappa coefficient of 0.946. On the other hand, the PCLDA-KNN model also performed well, achieving an accuracy of 97.8%, precision of 0.93, sensitivity of 93.39%, specificity of 97.86%, an F1 score of 0.92, a high MCC and Kappa coefficient of 0.98, and an error rate of 0.006. In conclusion, the PCLDA-SVM method exhibited improved efficacy in diagnosing prostate cancer compared to the PCLDA-KNN model. Both models, however, showed promising results, suggesting the potential of these classifiers in prostate cancer diagnosis." @default.
- W4386098047 created "2023-08-24" @default.
- W4386098047 creator A5020064581 @default.
- W4386098047 creator A5037635393 @default.
- W4386098047 date "2023-08-23" @default.
- W4386098047 modified "2023-09-25" @default.
- W4386098047 title "Advancing prostate cancer detection: a comparative analysis of PCLDA-SVM and PCLDA-KNN classifiers for enhanced diagnostic accuracy" @default.
- W4386098047 cites W1974097586 @default.
- W4386098047 cites W2127927679 @default.
- W4386098047 cites W2901840819 @default.
- W4386098047 cites W2930944530 @default.
- W4386098047 cites W2981396323 @default.
- W4386098047 cites W3017036693 @default.
- W4386098047 cites W3047375395 @default.
- W4386098047 cites W3047536348 @default.
- W4386098047 cites W3118534316 @default.
- W4386098047 cites W3127722248 @default.
- W4386098047 cites W3132322700 @default.
- W4386098047 cites W3133512290 @default.
- W4386098047 cites W3159403495 @default.
- W4386098047 cites W3176778894 @default.
- W4386098047 cites W3188217947 @default.
- W4386098047 cites W3194738630 @default.
- W4386098047 cites W3196261901 @default.
- W4386098047 cites W4205476016 @default.
- W4386098047 cites W4206179752 @default.
- W4386098047 cites W4211183273 @default.
- W4386098047 cites W4220893130 @default.
- W4386098047 cites W4221102335 @default.
- W4386098047 cites W4226373761 @default.
- W4386098047 cites W4285093832 @default.
- W4386098047 cites W4297311349 @default.
- W4386098047 cites W4306818368 @default.
- W4386098047 cites W4311855701 @default.
- W4386098047 doi "https://doi.org/10.1038/s41598-023-40906-y" @default.
- W4386098047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37612436" @default.
- W4386098047 hasPublicationYear "2023" @default.
- W4386098047 type Work @default.
- W4386098047 citedByCount "0" @default.
- W4386098047 crossrefType "journal-article" @default.
- W4386098047 hasAuthorship W4386098047A5020064581 @default.
- W4386098047 hasAuthorship W4386098047A5037635393 @default.
- W4386098047 hasBestOaLocation W43860980471 @default.
- W4386098047 hasConcept C119857082 @default.
- W4386098047 hasConcept C121608353 @default.
- W4386098047 hasConcept C12267149 @default.
- W4386098047 hasConcept C126322002 @default.
- W4386098047 hasConcept C153180895 @default.
- W4386098047 hasConcept C154945302 @default.
- W4386098047 hasConcept C163864269 @default.
- W4386098047 hasConcept C2524010 @default.
- W4386098047 hasConcept C27438332 @default.
- W4386098047 hasConcept C2778724333 @default.
- W4386098047 hasConcept C2780092901 @default.
- W4386098047 hasConcept C2780192828 @default.
- W4386098047 hasConcept C33923547 @default.
- W4386098047 hasConcept C41008148 @default.
- W4386098047 hasConcept C69738355 @default.
- W4386098047 hasConcept C71924100 @default.
- W4386098047 hasConceptScore W4386098047C119857082 @default.
- W4386098047 hasConceptScore W4386098047C121608353 @default.
- W4386098047 hasConceptScore W4386098047C12267149 @default.
- W4386098047 hasConceptScore W4386098047C126322002 @default.
- W4386098047 hasConceptScore W4386098047C153180895 @default.
- W4386098047 hasConceptScore W4386098047C154945302 @default.
- W4386098047 hasConceptScore W4386098047C163864269 @default.
- W4386098047 hasConceptScore W4386098047C2524010 @default.
- W4386098047 hasConceptScore W4386098047C27438332 @default.
- W4386098047 hasConceptScore W4386098047C2778724333 @default.
- W4386098047 hasConceptScore W4386098047C2780092901 @default.
- W4386098047 hasConceptScore W4386098047C2780192828 @default.
- W4386098047 hasConceptScore W4386098047C33923547 @default.
- W4386098047 hasConceptScore W4386098047C41008148 @default.
- W4386098047 hasConceptScore W4386098047C69738355 @default.
- W4386098047 hasConceptScore W4386098047C71924100 @default.
- W4386098047 hasIssue "1" @default.
- W4386098047 hasLocation W43860980471 @default.
- W4386098047 hasLocation W43860980472 @default.
- W4386098047 hasOpenAccess W4386098047 @default.
- W4386098047 hasPrimaryLocation W43860980471 @default.
- W4386098047 hasRelatedWork W1756315871 @default.
- W4386098047 hasRelatedWork W1967009489 @default.
- W4386098047 hasRelatedWork W1980511770 @default.
- W4386098047 hasRelatedWork W1984671715 @default.
- W4386098047 hasRelatedWork W2021098920 @default.
- W4386098047 hasRelatedWork W2052589448 @default.
- W4386098047 hasRelatedWork W2111149694 @default.
- W4386098047 hasRelatedWork W2295283813 @default.
- W4386098047 hasRelatedWork W2380927352 @default.
- W4386098047 hasRelatedWork W32502520 @default.
- W4386098047 hasVolume "13" @default.
- W4386098047 isParatext "false" @default.
- W4386098047 isRetracted "false" @default.
- W4386098047 workType "article" @default.