Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386098691> ?p ?o ?g. }
- W4386098691 endingPage "3026" @default.
- W4386098691 startingPage "3026" @default.
- W4386098691 abstract "The Majalaya area is one of the most valuable economic districts in the south of Greater Bandung, West Java, Indonesia, and experiences at least six floods per year. The floods are characterized by a sudden rise in the water level approximately one to two hours after the rain occurs. With the aim of reducing flood risk, this study models a data-driven method for predicting the inundation height across the Majalaya Watershed. The flood inundation maps of selected events were modeled using the HEC-RAS 2D numerical model. Extracted data from the HEC-RAS model, GSMaP satellite rainfall data, elevation, and other spatial data were combined to build an artificial neural network (ANN) model. The trained model targets inundation height, while the spatiotemporal data serve as the explanatory variables. The results from the trained ANN model provided very good R2 (0.9537), NSE (0.9292), and RMSE (0.3701) validation performances. The ANN model was tested with a new dataset to demonstrate the capability of predicting flood inundation height with unseen data. Such a data-driven approach is a promising tool to be developed to reduce flood risks in the Majalaya Watershed and other flood-prone locations." @default.
- W4386098691 created "2023-08-24" @default.
- W4386098691 creator A5000315719 @default.
- W4386098691 creator A5009304522 @default.
- W4386098691 creator A5018205007 @default.
- W4386098691 creator A5024968290 @default.
- W4386098691 creator A5069642118 @default.
- W4386098691 creator A5087161460 @default.
- W4386098691 creator A5089804774 @default.
- W4386098691 date "2023-08-23" @default.
- W4386098691 modified "2023-09-26" @default.
- W4386098691 title "The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed" @default.
- W4386098691 cites W1907702319 @default.
- W4386098691 cites W1973663667 @default.
- W4386098691 cites W1990858658 @default.
- W4386098691 cites W1991119582 @default.
- W4386098691 cites W2009321545 @default.
- W4386098691 cites W2027402385 @default.
- W4386098691 cites W2072462334 @default.
- W4386098691 cites W2103496339 @default.
- W4386098691 cites W2148265007 @default.
- W4386098691 cites W2166116275 @default.
- W4386098691 cites W2324318510 @default.
- W4386098691 cites W2341776351 @default.
- W4386098691 cites W2413554747 @default.
- W4386098691 cites W2692204387 @default.
- W4386098691 cites W2749788837 @default.
- W4386098691 cites W2789329162 @default.
- W4386098691 cites W2796279616 @default.
- W4386098691 cites W2909918885 @default.
- W4386098691 cites W2919070233 @default.
- W4386098691 cites W2953629585 @default.
- W4386098691 cites W2955985812 @default.
- W4386098691 cites W2994406538 @default.
- W4386098691 cites W2999144063 @default.
- W4386098691 cites W3011114739 @default.
- W4386098691 cites W3011484826 @default.
- W4386098691 cites W3017034177 @default.
- W4386098691 cites W3030754582 @default.
- W4386098691 cites W3046611204 @default.
- W4386098691 cites W3112266021 @default.
- W4386098691 cites W3117506853 @default.
- W4386098691 cites W3119095696 @default.
- W4386098691 cites W3120196075 @default.
- W4386098691 cites W3120886077 @default.
- W4386098691 cites W3122069641 @default.
- W4386098691 cites W3141416447 @default.
- W4386098691 cites W3162507588 @default.
- W4386098691 cites W3179251834 @default.
- W4386098691 cites W3182706339 @default.
- W4386098691 cites W3194468165 @default.
- W4386098691 cites W4206059986 @default.
- W4386098691 cites W4220752701 @default.
- W4386098691 cites W4220969563 @default.
- W4386098691 cites W4224255882 @default.
- W4386098691 cites W4229037626 @default.
- W4386098691 cites W4280547196 @default.
- W4386098691 cites W4280588527 @default.
- W4386098691 cites W4293057098 @default.
- W4386098691 cites W4308306334 @default.
- W4386098691 cites W4318777257 @default.
- W4386098691 cites W4366581022 @default.
- W4386098691 doi "https://doi.org/10.3390/w15173026" @default.
- W4386098691 hasPublicationYear "2023" @default.
- W4386098691 type Work @default.
- W4386098691 citedByCount "0" @default.
- W4386098691 crossrefType "journal-article" @default.
- W4386098691 hasAuthorship W4386098691A5000315719 @default.
- W4386098691 hasAuthorship W4386098691A5009304522 @default.
- W4386098691 hasAuthorship W4386098691A5018205007 @default.
- W4386098691 hasAuthorship W4386098691A5024968290 @default.
- W4386098691 hasAuthorship W4386098691A5069642118 @default.
- W4386098691 hasAuthorship W4386098691A5087161460 @default.
- W4386098691 hasAuthorship W4386098691A5089804774 @default.
- W4386098691 hasBestOaLocation W43860986911 @default.
- W4386098691 hasConcept C119857082 @default.
- W4386098691 hasConcept C127313418 @default.
- W4386098691 hasConcept C127413603 @default.
- W4386098691 hasConcept C146978453 @default.
- W4386098691 hasConcept C150547873 @default.
- W4386098691 hasConcept C153294291 @default.
- W4386098691 hasConcept C166957645 @default.
- W4386098691 hasConcept C187320778 @default.
- W4386098691 hasConcept C19269812 @default.
- W4386098691 hasConcept C205649164 @default.
- W4386098691 hasConcept C37054046 @default.
- W4386098691 hasConcept C39432304 @default.
- W4386098691 hasConcept C41008148 @default.
- W4386098691 hasConcept C50644808 @default.
- W4386098691 hasConcept C66938386 @default.
- W4386098691 hasConcept C74256435 @default.
- W4386098691 hasConcept C76886044 @default.
- W4386098691 hasConceptScore W4386098691C119857082 @default.
- W4386098691 hasConceptScore W4386098691C127313418 @default.
- W4386098691 hasConceptScore W4386098691C127413603 @default.
- W4386098691 hasConceptScore W4386098691C146978453 @default.
- W4386098691 hasConceptScore W4386098691C150547873 @default.
- W4386098691 hasConceptScore W4386098691C153294291 @default.