Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386098960> ?p ?o ?g. }
- W4386098960 endingPage "12718" @default.
- W4386098960 startingPage "12718" @default.
- W4386098960 abstract "The global demand for energy is increasing rapidly due to population growth, urbanization, and industrialization, as well as to meet the desire for a higher standard of living. However, environmental concerns, such as air pollution from fossil fuels, are becoming limiting factors for energy sources. Therefore, the appropriate and sustainable solution is to transition towards renewable energy sources to meet global energy demands by using environmentally friendly sources, such as geothermal. The Harrat Rahat volcanic field, located in the western region of the Kingdom of Saudi Arabia (KSA), gets more attention due to its geothermal potential as a viable site for geothermal energy exploration due to its high enthalpy. The prime objective of this study is to present up-to-date and comprehensive information on the utilization of borehole temperature and remote sensing data to identify the most prospective zones with significant geothermal activity favorable for exploration and drilling. A brief description of the selected wells and the methodology used to determine the petrophysical parameters relevant to the geothermal potential assessment are presented. Special emphasis is given to gamma-ray ray and temperature logs for calculating heat production and the geothermal gradient. The effectiveness of various machine learning techniques are assessed throughout this study for predicting the temperature-at-depth to evaluate the suitability of employing machine learning models for temperature prediction, and it is found that XG Boost provided excellent results. It can be observed that some linear anomalies can be traced in the NW, trending on the west side of the Harrat volcanic field based on magnetic data interpretation. The land surface temperature in 2021 exhibited higher temperatures compared to 2000, suggesting potential volcanic activity in the subsurface. It is concluded that the integration of remote sensing data with subsurface data provides the most reliable results." @default.
- W4386098960 created "2023-08-24" @default.
- W4386098960 creator A5008185582 @default.
- W4386098960 creator A5030333078 @default.
- W4386098960 creator A5045689384 @default.
- W4386098960 creator A5045967254 @default.
- W4386098960 creator A5060487488 @default.
- W4386098960 creator A5065366200 @default.
- W4386098960 creator A5075957355 @default.
- W4386098960 date "2023-08-22" @default.
- W4386098960 modified "2023-09-26" @default.
- W4386098960 title "Machine Learning Techniques in Predicting Bottom Hole Temperature and Remote Sensing for Assessment of Geothermal Potential in the Kingdom of Saudi Arabia" @default.
- W4386098960 cites W1576516474 @default.
- W4386098960 cites W1598470871 @default.
- W4386098960 cites W1981903761 @default.
- W4386098960 cites W1999720051 @default.
- W4386098960 cites W2002682856 @default.
- W4386098960 cites W2025841433 @default.
- W4386098960 cites W2031361235 @default.
- W4386098960 cites W2033507848 @default.
- W4386098960 cites W2040274885 @default.
- W4386098960 cites W2048631761 @default.
- W4386098960 cites W2052577154 @default.
- W4386098960 cites W2054804828 @default.
- W4386098960 cites W2055738493 @default.
- W4386098960 cites W2058720816 @default.
- W4386098960 cites W2088922705 @default.
- W4386098960 cites W2089079606 @default.
- W4386098960 cites W2101144354 @default.
- W4386098960 cites W2115274344 @default.
- W4386098960 cites W2144720528 @default.
- W4386098960 cites W2154073704 @default.
- W4386098960 cites W2158008371 @default.
- W4386098960 cites W2165795570 @default.
- W4386098960 cites W2270004545 @default.
- W4386098960 cites W2527726390 @default.
- W4386098960 cites W2592929672 @default.
- W4386098960 cites W2594570430 @default.
- W4386098960 cites W2732170151 @default.
- W4386098960 cites W2738993689 @default.
- W4386098960 cites W2767060352 @default.
- W4386098960 cites W2884089647 @default.
- W4386098960 cites W2907616800 @default.
- W4386098960 cites W2914305061 @default.
- W4386098960 cites W2943284011 @default.
- W4386098960 cites W2964748642 @default.
- W4386098960 cites W2986073020 @default.
- W4386098960 cites W2998198570 @default.
- W4386098960 cites W3004791521 @default.
- W4386098960 cites W3006411661 @default.
- W4386098960 cites W3008858690 @default.
- W4386098960 cites W3011215439 @default.
- W4386098960 cites W3015370575 @default.
- W4386098960 cites W3037109814 @default.
- W4386098960 cites W3106367675 @default.
- W4386098960 cites W3122626956 @default.
- W4386098960 cites W3171213434 @default.
- W4386098960 cites W4205337636 @default.
- W4386098960 cites W4225006674 @default.
- W4386098960 cites W4235486458 @default.
- W4386098960 cites W4282025199 @default.
- W4386098960 cites W4283118136 @default.
- W4386098960 cites W4283585554 @default.
- W4386098960 cites W4291915043 @default.
- W4386098960 cites W4292423701 @default.
- W4386098960 cites W4296569560 @default.
- W4386098960 cites W4310641061 @default.
- W4386098960 cites W4320339881 @default.
- W4386098960 cites W4323034401 @default.
- W4386098960 cites W4362636118 @default.
- W4386098960 cites W4375862132 @default.
- W4386098960 cites W4382794021 @default.
- W4386098960 cites W71516189 @default.
- W4386098960 cites W75602956 @default.
- W4386098960 cites W955809699 @default.
- W4386098960 doi "https://doi.org/10.3390/su151712718" @default.
- W4386098960 hasPublicationYear "2023" @default.
- W4386098960 type Work @default.
- W4386098960 citedByCount "0" @default.
- W4386098960 crossrefType "journal-article" @default.
- W4386098960 hasAuthorship W4386098960A5008185582 @default.
- W4386098960 hasAuthorship W4386098960A5030333078 @default.
- W4386098960 hasAuthorship W4386098960A5045689384 @default.
- W4386098960 hasAuthorship W4386098960A5045967254 @default.
- W4386098960 hasAuthorship W4386098960A5060487488 @default.
- W4386098960 hasAuthorship W4386098960A5065366200 @default.
- W4386098960 hasAuthorship W4386098960A5075957355 @default.
- W4386098960 hasBestOaLocation W43860989601 @default.
- W4386098960 hasConcept C111766609 @default.
- W4386098960 hasConcept C119599485 @default.
- W4386098960 hasConcept C120806208 @default.
- W4386098960 hasConcept C127313418 @default.
- W4386098960 hasConcept C127413603 @default.
- W4386098960 hasConcept C144024400 @default.
- W4386098960 hasConcept C149923435 @default.
- W4386098960 hasConcept C150560799 @default.
- W4386098960 hasConcept C162324750 @default.
- W4386098960 hasConcept C16674752 @default.