Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386102012> ?p ?o ?g. }
- W4386102012 endingPage "103040" @default.
- W4386102012 startingPage "103040" @default.
- W4386102012 abstract "Chicken is a major source of dietary protein worldwide. The dispersion and movement of chickens constitute vital indicators of their health and status. This is especially evident in Taiwanese native chickens (TNCs), a local variety which is high in physical activity when healthy. Conventionally, the dispersion and movement of chicken flocks are observed in patrols. However, manual patrolling is laborious and time-consuming. Moreover, frequent patrols increase the risk of carrying pathogens into chicken farms. To address these issues, this study proposes an approach to develop an automatic warning system for anomalous dispersion and movement of chicken flocks in commercial chicken farms. Embendded systems were developed to acquire videos of chickens from overhead view in a chicken house, in which approximately 20,000 TNCs were raised for a period of 10 wk. Each video was 5-min in length. The videos were transmitted to a remote cloud server and were converted into images. A You Only Look Once-version 7 tiny (YOLOv7-tiny) object detection model was trained to detect chickens in the images. The dispersion of the chicken flocks in a 5-min long video was calculated using nearest neighbor index (NNI). The movement of the chicken flocks in a 5-min long video was quantified using simple online and real-time tracking algorithm (SORT). The normal ranges (i.e., 95% confidence intervals) of chicken dispersion and movement were established using an autoregressive integrated moving average (ARIMA) model and a seasonal autoregressive integrated moving average with exogenous factors (SARIMAX) model, respectively. The system allows farmers to check up on the chicken farm only when the dispersion or movement values were not in the normal ranges. Thus, labor time can be saved and the risk of carrying pathogens into chicken farms can be reduced. The trained YOLOv7-tiny model achieved an average precision of 98.2% in chicken detection. SORT achieved a multiple object tracking accuracy of 95.3%. The ARIMA and SARIMAX achieved a mean absolute percentage error 3.71% and 13.39%, respectively, in forecasting dispersion and movement. The proposed approach can serve as a solution for automatic monitoring of anomalous chicken dispersion and movement in chicken farming, alerting farmers of potential health risks and environmental hazards in chicken farms." @default.
- W4386102012 created "2023-08-24" @default.
- W4386102012 creator A5003961039 @default.
- W4386102012 creator A5021134351 @default.
- W4386102012 creator A5025858016 @default.
- W4386102012 creator A5036030890 @default.
- W4386102012 creator A5054967610 @default.
- W4386102012 creator A5065929770 @default.
- W4386102012 creator A5073043891 @default.
- W4386102012 creator A5084991708 @default.
- W4386102012 creator A5092681503 @default.
- W4386102012 date "2023-12-01" @default.
- W4386102012 modified "2023-10-16" @default.
- W4386102012 title "Developing an automatic warning system for anomalous chicken dispersion and movement using deep learning and machine learning" @default.
- W4386102012 cites W1964765856 @default.
- W4386102012 cites W1980757670 @default.
- W4386102012 cites W1994349244 @default.
- W4386102012 cites W2031489346 @default.
- W4386102012 cites W2049763161 @default.
- W4386102012 cites W2133665775 @default.
- W4386102012 cites W2147800946 @default.
- W4386102012 cites W2158698691 @default.
- W4386102012 cites W2162656084 @default.
- W4386102012 cites W2222512263 @default.
- W4386102012 cites W2314340300 @default.
- W4386102012 cites W2531734722 @default.
- W4386102012 cites W2898402739 @default.
- W4386102012 cites W2904139194 @default.
- W4386102012 cites W2913630922 @default.
- W4386102012 cites W2922182161 @default.
- W4386102012 cites W2964668276 @default.
- W4386102012 cites W3002001278 @default.
- W4386102012 cites W3015459030 @default.
- W4386102012 cites W3041846921 @default.
- W4386102012 cites W3112753681 @default.
- W4386102012 cites W3139422684 @default.
- W4386102012 cites W3154571917 @default.
- W4386102012 cites W3161959216 @default.
- W4386102012 cites W4200416730 @default.
- W4386102012 cites W4226209294 @default.
- W4386102012 cites W4319225921 @default.
- W4386102012 cites W4386222838 @default.
- W4386102012 cites W639708223 @default.
- W4386102012 doi "https://doi.org/10.1016/j.psj.2023.103040" @default.
- W4386102012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37769488" @default.
- W4386102012 hasPublicationYear "2023" @default.
- W4386102012 type Work @default.
- W4386102012 citedByCount "1" @default.
- W4386102012 crossrefType "journal-article" @default.
- W4386102012 hasAuthorship W4386102012A5003961039 @default.
- W4386102012 hasAuthorship W4386102012A5021134351 @default.
- W4386102012 hasAuthorship W4386102012A5025858016 @default.
- W4386102012 hasAuthorship W4386102012A5036030890 @default.
- W4386102012 hasAuthorship W4386102012A5054967610 @default.
- W4386102012 hasAuthorship W4386102012A5065929770 @default.
- W4386102012 hasAuthorship W4386102012A5073043891 @default.
- W4386102012 hasAuthorship W4386102012A5084991708 @default.
- W4386102012 hasAuthorship W4386102012A5092681503 @default.
- W4386102012 hasBestOaLocation W43861020121 @default.
- W4386102012 hasConcept C107038049 @default.
- W4386102012 hasConcept C119857082 @default.
- W4386102012 hasConcept C120665830 @default.
- W4386102012 hasConcept C121332964 @default.
- W4386102012 hasConcept C134215735 @default.
- W4386102012 hasConcept C138885662 @default.
- W4386102012 hasConcept C151406439 @default.
- W4386102012 hasConcept C154945302 @default.
- W4386102012 hasConcept C177562468 @default.
- W4386102012 hasConcept C18903297 @default.
- W4386102012 hasConcept C24338571 @default.
- W4386102012 hasConcept C2780226923 @default.
- W4386102012 hasConcept C29825287 @default.
- W4386102012 hasConcept C41008148 @default.
- W4386102012 hasConcept C76155785 @default.
- W4386102012 hasConcept C86803240 @default.
- W4386102012 hasConceptScore W4386102012C107038049 @default.
- W4386102012 hasConceptScore W4386102012C119857082 @default.
- W4386102012 hasConceptScore W4386102012C120665830 @default.
- W4386102012 hasConceptScore W4386102012C121332964 @default.
- W4386102012 hasConceptScore W4386102012C134215735 @default.
- W4386102012 hasConceptScore W4386102012C138885662 @default.
- W4386102012 hasConceptScore W4386102012C151406439 @default.
- W4386102012 hasConceptScore W4386102012C154945302 @default.
- W4386102012 hasConceptScore W4386102012C177562468 @default.
- W4386102012 hasConceptScore W4386102012C18903297 @default.
- W4386102012 hasConceptScore W4386102012C24338571 @default.
- W4386102012 hasConceptScore W4386102012C2780226923 @default.
- W4386102012 hasConceptScore W4386102012C29825287 @default.
- W4386102012 hasConceptScore W4386102012C41008148 @default.
- W4386102012 hasConceptScore W4386102012C76155785 @default.
- W4386102012 hasConceptScore W4386102012C86803240 @default.
- W4386102012 hasFunder F4320310116 @default.
- W4386102012 hasIssue "12" @default.
- W4386102012 hasLocation W43861020121 @default.
- W4386102012 hasLocation W43861020122 @default.
- W4386102012 hasOpenAccess W4386102012 @default.
- W4386102012 hasPrimaryLocation W43861020121 @default.
- W4386102012 hasRelatedWork W1964655178 @default.