Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386103654> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4386103654 endingPage "44" @default.
- W4386103654 startingPage "35" @default.
- W4386103654 abstract "Electronic commerce (e-commerce) brings huge advantages to businesses for selling products through multiple online shops. However, companies have difficulties in supervising the prices of products set by different retail shops on e-commerce platforms. Addressing these difficulties, we suggest a method to identify and predict products that sell at incorrect prices using a machine learning model combined price analysis. The study uses four machine learning models: K-nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Multinomial Naive Bayes (MNB) and two text-based information extraction methods: BoW and TF-IDF to find to the best method. The research results show that the RF model and text-based information extraction method by the BoW provide more average accuracy than other specific models, when experimenting on the filter dataset the average accuracy after 10 runs are RF: 98.06%, SVM: 83.92%, MNB: 92.21%, KNN: 94.06%. Experimental results on the product dataset have an accuracy of RF: 83.02%, SVM: 55%, MNB: 79.33%, KNN: 79.36%." @default.
- W4386103654 created "2023-08-24" @default.
- W4386103654 creator A5036077555 @default.
- W4386103654 creator A5059217255 @default.
- W4386103654 creator A5066457573 @default.
- W4386103654 date "2023-07-14" @default.
- W4386103654 modified "2023-10-06" @default.
- W4386103654 title "Identify and predict incorrect prices by Machine Learning Model" @default.
- W4386103654 cites W1988790447 @default.
- W4386103654 cites W2040243733 @default.
- W4386103654 cites W2056112074 @default.
- W4386103654 cites W2067885219 @default.
- W4386103654 cites W2122111042 @default.
- W4386103654 cites W2136132422 @default.
- W4386103654 cites W2149684865 @default.
- W4386103654 cites W2340365938 @default.
- W4386103654 cites W2779616541 @default.
- W4386103654 cites W2807415124 @default.
- W4386103654 cites W2890112805 @default.
- W4386103654 cites W2894060253 @default.
- W4386103654 cites W2911964244 @default.
- W4386103654 cites W2912466316 @default.
- W4386103654 cites W2963738379 @default.
- W4386103654 cites W2972414240 @default.
- W4386103654 cites W2984072578 @default.
- W4386103654 cites W3091458940 @default.
- W4386103654 cites W3121649801 @default.
- W4386103654 cites W4205686226 @default.
- W4386103654 cites W4230674625 @default.
- W4386103654 cites W4256561644 @default.
- W4386103654 cites W4296753750 @default.
- W4386103654 doi "https://doi.org/10.22144/ctu.jen.2023.018" @default.
- W4386103654 hasPublicationYear "2023" @default.
- W4386103654 type Work @default.
- W4386103654 citedByCount "0" @default.
- W4386103654 crossrefType "journal-article" @default.
- W4386103654 hasAuthorship W4386103654A5036077555 @default.
- W4386103654 hasAuthorship W4386103654A5059217255 @default.
- W4386103654 hasAuthorship W4386103654A5066457573 @default.
- W4386103654 hasBestOaLocation W43861036541 @default.
- W4386103654 hasConcept C106131492 @default.
- W4386103654 hasConcept C113238511 @default.
- W4386103654 hasConcept C119857082 @default.
- W4386103654 hasConcept C12267149 @default.
- W4386103654 hasConcept C124101348 @default.
- W4386103654 hasConcept C154945302 @default.
- W4386103654 hasConcept C169258074 @default.
- W4386103654 hasConcept C177264268 @default.
- W4386103654 hasConcept C199360897 @default.
- W4386103654 hasConcept C31972630 @default.
- W4386103654 hasConcept C41008148 @default.
- W4386103654 hasConcept C52001869 @default.
- W4386103654 hasConceptScore W4386103654C106131492 @default.
- W4386103654 hasConceptScore W4386103654C113238511 @default.
- W4386103654 hasConceptScore W4386103654C119857082 @default.
- W4386103654 hasConceptScore W4386103654C12267149 @default.
- W4386103654 hasConceptScore W4386103654C124101348 @default.
- W4386103654 hasConceptScore W4386103654C154945302 @default.
- W4386103654 hasConceptScore W4386103654C169258074 @default.
- W4386103654 hasConceptScore W4386103654C177264268 @default.
- W4386103654 hasConceptScore W4386103654C199360897 @default.
- W4386103654 hasConceptScore W4386103654C31972630 @default.
- W4386103654 hasConceptScore W4386103654C41008148 @default.
- W4386103654 hasConceptScore W4386103654C52001869 @default.
- W4386103654 hasIssue "2" @default.
- W4386103654 hasLocation W43861036541 @default.
- W4386103654 hasOpenAccess W4386103654 @default.
- W4386103654 hasPrimaryLocation W43861036541 @default.
- W4386103654 hasRelatedWork W2985924212 @default.
- W4386103654 hasRelatedWork W3108448481 @default.
- W4386103654 hasRelatedWork W3168994312 @default.
- W4386103654 hasRelatedWork W3195168932 @default.
- W4386103654 hasRelatedWork W4221021152 @default.
- W4386103654 hasRelatedWork W4285343791 @default.
- W4386103654 hasRelatedWork W4375930479 @default.
- W4386103654 hasRelatedWork W4377964522 @default.
- W4386103654 hasRelatedWork W4381235817 @default.
- W4386103654 hasRelatedWork W4384345534 @default.
- W4386103654 hasVolume "15" @default.
- W4386103654 isParatext "false" @default.
- W4386103654 isRetracted "false" @default.
- W4386103654 workType "article" @default.