Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386106254> ?p ?o ?g. }
- W4386106254 endingPage "125" @default.
- W4386106254 startingPage "81" @default.
- W4386106254 abstract "Abstract Sentence and document are high-level linguistic units of natural languages. Representation learning of sentences and documents remains a core and challenging task because many important applications of natural language processing (NLP) lie in understanding sentences and documents. This chapter first introduces symbolic methods to sentence and document representation learning. Then we extensively introduce neural network-based methods for the far-reaching language modeling task, including feed-forward neural networks, convolutional neural networks, recurrent neural networks, and Transformers. Regarding the characteristics of a document consisting of multiple sentences, we particularly introduce memory-based and hierarchical approaches to document representation learning. Finally, we present representative applications of sentence and document representation, including text classification, sequence labeling, reading comprehension, question answering, information retrieval, and sequence-to-sequence generation." @default.
- W4386106254 created "2023-08-24" @default.
- W4386106254 creator A5026479991 @default.
- W4386106254 creator A5029873349 @default.
- W4386106254 creator A5043098453 @default.
- W4386106254 creator A5046448314 @default.
- W4386106254 date "2023-01-01" @default.
- W4386106254 modified "2023-09-26" @default.
- W4386106254 title "Sentence and Document Representation Learning" @default.
- W4386106254 cites W179875071 @default.
- W4386106254 cites W1832693441 @default.
- W4386106254 cites W1840435438 @default.
- W4386106254 cites W1979263599 @default.
- W4386106254 cites W2050331639 @default.
- W4386106254 cites W2064675550 @default.
- W4386106254 cites W2081687495 @default.
- W4386106254 cites W2082092506 @default.
- W4386106254 cites W2090243146 @default.
- W4386106254 cites W2091981305 @default.
- W4386106254 cites W2101105183 @default.
- W4386106254 cites W2104009457 @default.
- W4386106254 cites W2115242108 @default.
- W4386106254 cites W2120615054 @default.
- W4386106254 cites W2134237567 @default.
- W4386106254 cites W2157189245 @default.
- W4386106254 cites W2163918411 @default.
- W4386106254 cites W2250966211 @default.
- W4386106254 cites W2265846598 @default.
- W4386106254 cites W2296283641 @default.
- W4386106254 cites W2317438879 @default.
- W4386106254 cites W2470673105 @default.
- W4386106254 cites W2521709538 @default.
- W4386106254 cites W2534274346 @default.
- W4386106254 cites W2606089314 @default.
- W4386106254 cites W2606964149 @default.
- W4386106254 cites W2608787653 @default.
- W4386106254 cites W2739794259 @default.
- W4386106254 cites W2740747242 @default.
- W4386106254 cites W2741263286 @default.
- W4386106254 cites W2783640434 @default.
- W4386106254 cites W2962809918 @default.
- W4386106254 cites W2962885853 @default.
- W4386106254 cites W2962985038 @default.
- W4386106254 cites W2963344337 @default.
- W4386106254 cites W2963448850 @default.
- W4386106254 cites W2963471260 @default.
- W4386106254 cites W2963542836 @default.
- W4386106254 cites W2963625095 @default.
- W4386106254 cites W2963748441 @default.
- W4386106254 cites W2963921497 @default.
- W4386106254 cites W2964046515 @default.
- W4386106254 cites W2964090065 @default.
- W4386106254 cites W2964182988 @default.
- W4386106254 cites W3035594424 @default.
- W4386106254 cites W3177312484 @default.
- W4386106254 cites W4212902066 @default.
- W4386106254 cites W4289865932 @default.
- W4386106254 doi "https://doi.org/10.1007/978-981-99-1600-9_4" @default.
- W4386106254 hasPublicationYear "2023" @default.
- W4386106254 type Work @default.
- W4386106254 citedByCount "0" @default.
- W4386106254 crossrefType "book-chapter" @default.
- W4386106254 hasAuthorship W4386106254A5026479991 @default.
- W4386106254 hasAuthorship W4386106254A5029873349 @default.
- W4386106254 hasAuthorship W4386106254A5043098453 @default.
- W4386106254 hasAuthorship W4386106254A5046448314 @default.
- W4386106254 hasBestOaLocation W43861062541 @default.
- W4386106254 hasConcept C121332964 @default.
- W4386106254 hasConcept C147168706 @default.
- W4386106254 hasConcept C154945302 @default.
- W4386106254 hasConcept C165801399 @default.
- W4386106254 hasConcept C17744445 @default.
- W4386106254 hasConcept C199539241 @default.
- W4386106254 hasConcept C204321447 @default.
- W4386106254 hasConcept C2776359362 @default.
- W4386106254 hasConcept C2777530160 @default.
- W4386106254 hasConcept C41008148 @default.
- W4386106254 hasConcept C44291984 @default.
- W4386106254 hasConcept C50644808 @default.
- W4386106254 hasConcept C62520636 @default.
- W4386106254 hasConcept C66322947 @default.
- W4386106254 hasConcept C94625758 @default.
- W4386106254 hasConceptScore W4386106254C121332964 @default.
- W4386106254 hasConceptScore W4386106254C147168706 @default.
- W4386106254 hasConceptScore W4386106254C154945302 @default.
- W4386106254 hasConceptScore W4386106254C165801399 @default.
- W4386106254 hasConceptScore W4386106254C17744445 @default.
- W4386106254 hasConceptScore W4386106254C199539241 @default.
- W4386106254 hasConceptScore W4386106254C204321447 @default.
- W4386106254 hasConceptScore W4386106254C2776359362 @default.
- W4386106254 hasConceptScore W4386106254C2777530160 @default.
- W4386106254 hasConceptScore W4386106254C41008148 @default.
- W4386106254 hasConceptScore W4386106254C44291984 @default.
- W4386106254 hasConceptScore W4386106254C50644808 @default.
- W4386106254 hasConceptScore W4386106254C62520636 @default.
- W4386106254 hasConceptScore W4386106254C66322947 @default.
- W4386106254 hasConceptScore W4386106254C94625758 @default.
- W4386106254 hasLocation W43861062541 @default.