Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386107350> ?p ?o ?g. }
- W4386107350 endingPage "1593" @default.
- W4386107350 startingPage "1571" @default.
- W4386107350 abstract "The present chapter provides an exhaustive review on the noise monitoring studies, comparison of the prediction models including physical propagation model, and applications of the artificial intelligence techniques, noise mapping, and noise pollution monitoring in mining sector carried out by various researchers. Most of the noise pollution studies deal with the assessment of traffic noise and some were focused exclusively on noise monitoring for the residential, educational, industrial, and commercial sites noise. The study reveals that early models were based on mathematical prediction models, later machine learning and deep learning methods were generally used for prediction and forecasting of noise levels. A retrospective view on noise mapping and control is presented in the chapter. Also, the noise pollution control and abatement measures are highlighted that shall be indispensable for reducing the ambient noise levels in metropolitan cities of the country." @default.
- W4386107350 created "2023-08-24" @default.
- W4386107350 creator A5034287325 @default.
- W4386107350 creator A5035522115 @default.
- W4386107350 creator A5043429950 @default.
- W4386107350 date "2023-01-01" @default.
- W4386107350 modified "2023-10-01" @default.
- W4386107350 title "Strategies and Implications of Noise Pollution Monitoring, Modelling, and Mitigation in Urban Cities" @default.
- W4386107350 cites W1531695424 @default.
- W4386107350 cites W1635589805 @default.
- W4386107350 cites W1967211271 @default.
- W4386107350 cites W1968165208 @default.
- W4386107350 cites W1977408156 @default.
- W4386107350 cites W1978985447 @default.
- W4386107350 cites W1980049038 @default.
- W4386107350 cites W1986940499 @default.
- W4386107350 cites W1988519022 @default.
- W4386107350 cites W1995738756 @default.
- W4386107350 cites W2009670585 @default.
- W4386107350 cites W2010973889 @default.
- W4386107350 cites W2012392502 @default.
- W4386107350 cites W2013926986 @default.
- W4386107350 cites W2019754927 @default.
- W4386107350 cites W2028546147 @default.
- W4386107350 cites W2034747284 @default.
- W4386107350 cites W2040376361 @default.
- W4386107350 cites W2040536790 @default.
- W4386107350 cites W2045394951 @default.
- W4386107350 cites W2049221022 @default.
- W4386107350 cites W2061846756 @default.
- W4386107350 cites W2062572470 @default.
- W4386107350 cites W2062999869 @default.
- W4386107350 cites W2071640819 @default.
- W4386107350 cites W2077029830 @default.
- W4386107350 cites W2080782212 @default.
- W4386107350 cites W2083342647 @default.
- W4386107350 cites W2084824569 @default.
- W4386107350 cites W2092714473 @default.
- W4386107350 cites W2101469563 @default.
- W4386107350 cites W2114560218 @default.
- W4386107350 cites W2123627429 @default.
- W4386107350 cites W2133058277 @default.
- W4386107350 cites W2160569058 @default.
- W4386107350 cites W2252826397 @default.
- W4386107350 cites W2426725704 @default.
- W4386107350 cites W2427831998 @default.
- W4386107350 cites W2511206678 @default.
- W4386107350 cites W2754007387 @default.
- W4386107350 cites W2947352183 @default.
- W4386107350 cites W2961531191 @default.
- W4386107350 cites W2994151305 @default.
- W4386107350 cites W3005321468 @default.
- W4386107350 cites W3006572774 @default.
- W4386107350 cites W3085808659 @default.
- W4386107350 cites W3088525587 @default.
- W4386107350 cites W3094318457 @default.
- W4386107350 cites W3119830934 @default.
- W4386107350 cites W3123965437 @default.
- W4386107350 cites W3133671315 @default.
- W4386107350 cites W3138790025 @default.
- W4386107350 cites W3184514895 @default.
- W4386107350 cites W3185668006 @default.
- W4386107350 cites W3187787124 @default.
- W4386107350 cites W4200349310 @default.
- W4386107350 cites W4214925645 @default.
- W4386107350 cites W4280532235 @default.
- W4386107350 cites W4281752897 @default.
- W4386107350 cites W4281760108 @default.
- W4386107350 doi "https://doi.org/10.1007/978-981-99-2074-7_86" @default.
- W4386107350 hasPublicationYear "2023" @default.
- W4386107350 type Work @default.
- W4386107350 citedByCount "0" @default.
- W4386107350 crossrefType "book-chapter" @default.
- W4386107350 hasAuthorship W4386107350A5034287325 @default.
- W4386107350 hasAuthorship W4386107350A5035522115 @default.
- W4386107350 hasAuthorship W4386107350A5043429950 @default.
- W4386107350 hasConcept C115961682 @default.
- W4386107350 hasConcept C116822448 @default.
- W4386107350 hasConcept C119857082 @default.
- W4386107350 hasConcept C121332964 @default.
- W4386107350 hasConcept C130858481 @default.
- W4386107350 hasConcept C154945302 @default.
- W4386107350 hasConcept C158739034 @default.
- W4386107350 hasConcept C163294075 @default.
- W4386107350 hasConcept C166957645 @default.
- W4386107350 hasConcept C18903297 @default.
- W4386107350 hasConcept C203718221 @default.
- W4386107350 hasConcept C205649164 @default.
- W4386107350 hasConcept C24890656 @default.
- W4386107350 hasConcept C29265498 @default.
- W4386107350 hasConcept C39432304 @default.
- W4386107350 hasConcept C41008148 @default.
- W4386107350 hasConcept C45804977 @default.
- W4386107350 hasConcept C521259446 @default.
- W4386107350 hasConcept C86781634 @default.
- W4386107350 hasConcept C86803240 @default.
- W4386107350 hasConcept C99498987 @default.
- W4386107350 hasConceptScore W4386107350C115961682 @default.