Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386113886> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4386113886 abstract "Emotion recognition in conversation (ERC) has received increasing attention from researchers due to its wide range of applications.As conversation has a natural graph structure,numerous approaches used to model ERC based on graph convolutional networks (GCNs) have yielded significant results.However,the aggregation approach of traditional GCNs suffers from the node information redundancy problem,leading to node discriminant information loss.Additionally,single-layer GCNs lack the capacity to capture long-range contextual information from the graph. Furthermore,the majority of approaches are based on textual modality or stitching together different modalities, resulting in a weak ability to capture interactions between modalities. To address these problems, we present the relational bilevel aggregation graph convolutional network (RBA-GCN), which consists of three modules: the graph generation module (GGM), similarity-based cluster building module (SCBM) and bilevel aggregation module (BiAM). First, GGM constructs a novel graph to reduce the redundancy of target node information.Then,SCBM calculates the node similarity in the target node and its structural neighborhood, where noisy information with low similarity is filtered out to preserve the discriminant information of the node. Meanwhile, BiAM is a novel aggregation method that can preserve the information of nodes during the aggregation process. This module can construct the interaction between different modalities and capture long-range contextual information based on similarity clusters. On both the IEMOCAP and MELD datasets, the weighted average F1 score of RBA-GCN has a 2.17$sim$5.21% improvement over that of the most advanced method.Our code is available at https://github.com/luftmenscher/RBA-GCN and our article with the same name has been published in IEEE/ACM Transactions on Audio,Speech,and Language Processing,vol.31,2023" @default.
- W4386113886 created "2023-08-24" @default.
- W4386113886 creator A5005772506 @default.
- W4386113886 creator A5006709942 @default.
- W4386113886 creator A5051381076 @default.
- W4386113886 creator A5052372774 @default.
- W4386113886 creator A5062888811 @default.
- W4386113886 creator A5090807566 @default.
- W4386113886 date "2023-08-18" @default.
- W4386113886 modified "2023-09-23" @default.
- W4386113886 title "RBA-GCN: Relational Bilevel Aggregation Graph Convolutional Network for Emotion Recognition" @default.
- W4386113886 doi "https://doi.org/10.1109/taslp.2023.3284509" @default.
- W4386113886 hasPublicationYear "2023" @default.
- W4386113886 type Work @default.
- W4386113886 citedByCount "0" @default.
- W4386113886 crossrefType "posted-content" @default.
- W4386113886 hasAuthorship W4386113886A5005772506 @default.
- W4386113886 hasAuthorship W4386113886A5006709942 @default.
- W4386113886 hasAuthorship W4386113886A5051381076 @default.
- W4386113886 hasAuthorship W4386113886A5052372774 @default.
- W4386113886 hasAuthorship W4386113886A5062888811 @default.
- W4386113886 hasAuthorship W4386113886A5090807566 @default.
- W4386113886 hasBestOaLocation W43861138861 @default.
- W4386113886 hasConcept C111919701 @default.
- W4386113886 hasConcept C124101348 @default.
- W4386113886 hasConcept C127413603 @default.
- W4386113886 hasConcept C132525143 @default.
- W4386113886 hasConcept C152124472 @default.
- W4386113886 hasConcept C153180895 @default.
- W4386113886 hasConcept C154945302 @default.
- W4386113886 hasConcept C41008148 @default.
- W4386113886 hasConcept C62611344 @default.
- W4386113886 hasConcept C66938386 @default.
- W4386113886 hasConcept C80444323 @default.
- W4386113886 hasConceptScore W4386113886C111919701 @default.
- W4386113886 hasConceptScore W4386113886C124101348 @default.
- W4386113886 hasConceptScore W4386113886C127413603 @default.
- W4386113886 hasConceptScore W4386113886C132525143 @default.
- W4386113886 hasConceptScore W4386113886C152124472 @default.
- W4386113886 hasConceptScore W4386113886C153180895 @default.
- W4386113886 hasConceptScore W4386113886C154945302 @default.
- W4386113886 hasConceptScore W4386113886C41008148 @default.
- W4386113886 hasConceptScore W4386113886C62611344 @default.
- W4386113886 hasConceptScore W4386113886C66938386 @default.
- W4386113886 hasConceptScore W4386113886C80444323 @default.
- W4386113886 hasLocation W43861138861 @default.
- W4386113886 hasOpenAccess W4386113886 @default.
- W4386113886 hasPrimaryLocation W43861138861 @default.
- W4386113886 hasRelatedWork W2033914206 @default.
- W4386113886 hasRelatedWork W2042327336 @default.
- W4386113886 hasRelatedWork W2046077695 @default.
- W4386113886 hasRelatedWork W2146076056 @default.
- W4386113886 hasRelatedWork W2163831990 @default.
- W4386113886 hasRelatedWork W2378160586 @default.
- W4386113886 hasRelatedWork W2996038082 @default.
- W4386113886 hasRelatedWork W3003836766 @default.
- W4386113886 hasRelatedWork W3047965787 @default.
- W4386113886 hasRelatedWork W3184582087 @default.
- W4386113886 isParatext "false" @default.
- W4386113886 isRetracted "false" @default.
- W4386113886 workType "article" @default.