Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386117191> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4386117191 abstract "Artificial intelligence (AI) is becoming increasingly used in medical education, but our understanding of the validity of AI-based assessments (AIBA) as compared with traditional clinical expert-based assessments (EBA) is limited. In this study, the authors aimed to compare and contrast the validity evidence for the assessment of a complex clinical skill based on scores generated from an AI and trained clinical experts, respectively.The study was conducted between September 2020 to October 2022. The authors used Kane's validity framework to prioritise and organise their evidence according to the four inferences: scoring, generalisation, extrapolation and implications. The context of the study was chorionic villus sampling performed within the simulated setting. AIBA and EBA were used to evaluate performances of experts, intermediates and novice based on video recordings. The clinical experts used a scoring instrument developed in a previous international consensus study. The AI used convolutional neural networks for capturing features on video recordings, motion tracking and eye movements to arrive at a final composite score.A total of 45 individuals participated in the study (22 novices, 12 intermediates and 11 experts). The authors demonstrated validity evidence for scoring, generalisation, extrapolation and implications for both EBA and AIBA. The plausibility of assumptions related to scoring, evidence of reproducibility and relation to different training levels was examined. Issues relating to construct underrepresentation, lack of explainability, and threats to robustness were identified as potential weak links in the AIBA validity argument compared with the EBA validity argument.There were weak links in the use of AIBA compared with EBA, mainly in their representation of the underlying construct but also regarding their explainability and ability to transfer to other datasets. However, combining AI and clinical expert-based assessments may offer complementary benefits, which is a promising subject for future research." @default.
- W4386117191 created "2023-08-25" @default.
- W4386117191 creator A5016914988 @default.
- W4386117191 creator A5029796323 @default.
- W4386117191 creator A5041471816 @default.
- W4386117191 creator A5043719478 @default.
- W4386117191 creator A5047270428 @default.
- W4386117191 creator A5058767060 @default.
- W4386117191 creator A5070544566 @default.
- W4386117191 creator A5074556584 @default.
- W4386117191 date "2023-08-24" @default.
- W4386117191 modified "2023-10-16" @default.
- W4386117191 title "Validity evidence supporting clinical skills assessment by artificial intelligence compared with trained clinician raters" @default.
- W4386117191 cites W1596017546 @default.
- W4386117191 cites W1607559973 @default.
- W4386117191 cites W1704942559 @default.
- W4386117191 cites W2009955509 @default.
- W4386117191 cites W2032812776 @default.
- W4386117191 cites W2158013804 @default.
- W4386117191 cites W2171032518 @default.
- W4386117191 cites W2177870565 @default.
- W4386117191 cites W2327037637 @default.
- W4386117191 cites W2751676879 @default.
- W4386117191 cites W2766894906 @default.
- W4386117191 cites W2898970033 @default.
- W4386117191 cites W2937037822 @default.
- W4386117191 cites W2939970150 @default.
- W4386117191 cites W2955580176 @default.
- W4386117191 cites W2963647178 @default.
- W4386117191 cites W2966447025 @default.
- W4386117191 cites W2981296841 @default.
- W4386117191 cites W3013053228 @default.
- W4386117191 cites W3047629609 @default.
- W4386117191 cites W3131590209 @default.
- W4386117191 cites W3181959365 @default.
- W4386117191 cites W3212926258 @default.
- W4386117191 cites W4212922284 @default.
- W4386117191 cites W4220759174 @default.
- W4386117191 cites W4301397814 @default.
- W4386117191 doi "https://doi.org/10.1111/medu.15190" @default.
- W4386117191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37615058" @default.
- W4386117191 hasPublicationYear "2023" @default.
- W4386117191 type Work @default.
- W4386117191 citedByCount "0" @default.
- W4386117191 crossrefType "journal-article" @default.
- W4386117191 hasAuthorship W4386117191A5016914988 @default.
- W4386117191 hasAuthorship W4386117191A5029796323 @default.
- W4386117191 hasAuthorship W4386117191A5041471816 @default.
- W4386117191 hasAuthorship W4386117191A5043719478 @default.
- W4386117191 hasAuthorship W4386117191A5047270428 @default.
- W4386117191 hasAuthorship W4386117191A5058767060 @default.
- W4386117191 hasAuthorship W4386117191A5070544566 @default.
- W4386117191 hasAuthorship W4386117191A5074556584 @default.
- W4386117191 hasBestOaLocation W43861171911 @default.
- W4386117191 hasConcept C151730666 @default.
- W4386117191 hasConcept C154945302 @default.
- W4386117191 hasConcept C15744967 @default.
- W4386117191 hasConcept C171606756 @default.
- W4386117191 hasConcept C174106493 @default.
- W4386117191 hasConcept C2779343474 @default.
- W4386117191 hasConcept C41008148 @default.
- W4386117191 hasConcept C49453240 @default.
- W4386117191 hasConcept C70410870 @default.
- W4386117191 hasConcept C77805123 @default.
- W4386117191 hasConcept C86803240 @default.
- W4386117191 hasConcept C90963130 @default.
- W4386117191 hasConceptScore W4386117191C151730666 @default.
- W4386117191 hasConceptScore W4386117191C154945302 @default.
- W4386117191 hasConceptScore W4386117191C15744967 @default.
- W4386117191 hasConceptScore W4386117191C171606756 @default.
- W4386117191 hasConceptScore W4386117191C174106493 @default.
- W4386117191 hasConceptScore W4386117191C2779343474 @default.
- W4386117191 hasConceptScore W4386117191C41008148 @default.
- W4386117191 hasConceptScore W4386117191C49453240 @default.
- W4386117191 hasConceptScore W4386117191C70410870 @default.
- W4386117191 hasConceptScore W4386117191C77805123 @default.
- W4386117191 hasConceptScore W4386117191C86803240 @default.
- W4386117191 hasConceptScore W4386117191C90963130 @default.
- W4386117191 hasFunder F4320325957 @default.
- W4386117191 hasLocation W43861171911 @default.
- W4386117191 hasLocation W43861171912 @default.
- W4386117191 hasOpenAccess W4386117191 @default.
- W4386117191 hasPrimaryLocation W43861171911 @default.
- W4386117191 hasRelatedWork W1533921635 @default.
- W4386117191 hasRelatedWork W1913832550 @default.
- W4386117191 hasRelatedWork W1972836827 @default.
- W4386117191 hasRelatedWork W2351798759 @default.
- W4386117191 hasRelatedWork W2378343155 @default.
- W4386117191 hasRelatedWork W3183620024 @default.
- W4386117191 hasRelatedWork W4231353633 @default.
- W4386117191 hasRelatedWork W4238223983 @default.
- W4386117191 hasRelatedWork W4245492502 @default.
- W4386117191 hasRelatedWork W4249070393 @default.
- W4386117191 isParatext "false" @default.
- W4386117191 isRetracted "false" @default.
- W4386117191 workType "article" @default.