Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386119003> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4386119003 abstract "Colon cancer is the third most prevalent kind of cancer worldwide. A colonoscopy is the global standard for colorectal screening and treatment because it enables the elimination of polyps before they transform into cancerous tumours. Due to the wide variety of polyp types in terms of shape, texture, size, and color, as well as the presence of numerous mimic polyps during colonoscopy, automatic detection of colonic polyps remains an issue that needs more work. Deep learning architectures enhance polyp detection by extracting polyp characteristics. In order to train deep neural networks to recognise polyps in the sparsely available polyp photos, we looked into image enhancement techniques. In our research, we relied solely on public datasets that were supplemented with additional data to yield 3, 972 positive polyp images. Our model is made up of three stages that are preprocessing, polyp detection, and data analysis. In the preprocessing, techniques for image enhancement like rotation and flipping were applied. This model heavily relied on the YOLOv4 detection tool. Finally, the error analysis section aimed to compare the results of our detector with the ground truth for all polyp images. We accomplished 94% precision, 90% recall, and an F1 score of 92%." @default.
- W4386119003 created "2023-08-25" @default.
- W4386119003 creator A5047037216 @default.
- W4386119003 creator A5057669321 @default.
- W4386119003 creator A5080555226 @default.
- W4386119003 date "2023-07-15" @default.
- W4386119003 modified "2023-10-02" @default.
- W4386119003 title "Early Detection of Colon Cancer Using Deep Learning Techniques" @default.
- W4386119003 cites W1942737395 @default.
- W4386119003 cites W2008359794 @default.
- W4386119003 cites W2021088830 @default.
- W4386119003 cites W2034269173 @default.
- W4386119003 cites W2054367831 @default.
- W4386119003 cites W2083441748 @default.
- W4386119003 cites W2285968993 @default.
- W4386119003 cites W2320150036 @default.
- W4386119003 cites W2546191734 @default.
- W4386119003 cites W2560014990 @default.
- W4386119003 cites W2570343428 @default.
- W4386119003 cites W2946493321 @default.
- W4386119003 cites W2999580839 @default.
- W4386119003 cites W3025016096 @default.
- W4386119003 cites W3027658921 @default.
- W4386119003 cites W3106250896 @default.
- W4386119003 cites W3167977644 @default.
- W4386119003 doi "https://doi.org/10.1109/imsa58542.2023.10217586" @default.
- W4386119003 hasPublicationYear "2023" @default.
- W4386119003 type Work @default.
- W4386119003 citedByCount "0" @default.
- W4386119003 crossrefType "proceedings-article" @default.
- W4386119003 hasAuthorship W4386119003A5047037216 @default.
- W4386119003 hasAuthorship W4386119003A5057669321 @default.
- W4386119003 hasAuthorship W4386119003A5080555226 @default.
- W4386119003 hasConcept C108583219 @default.
- W4386119003 hasConcept C115961682 @default.
- W4386119003 hasConcept C121608353 @default.
- W4386119003 hasConcept C124504099 @default.
- W4386119003 hasConcept C126322002 @default.
- W4386119003 hasConcept C146849305 @default.
- W4386119003 hasConcept C153180895 @default.
- W4386119003 hasConcept C154945302 @default.
- W4386119003 hasConcept C2778435480 @default.
- W4386119003 hasConcept C2910564736 @default.
- W4386119003 hasConcept C31972630 @default.
- W4386119003 hasConcept C34736171 @default.
- W4386119003 hasConcept C41008148 @default.
- W4386119003 hasConcept C50644808 @default.
- W4386119003 hasConcept C526805850 @default.
- W4386119003 hasConcept C63099799 @default.
- W4386119003 hasConcept C71924100 @default.
- W4386119003 hasConcept C81669768 @default.
- W4386119003 hasConceptScore W4386119003C108583219 @default.
- W4386119003 hasConceptScore W4386119003C115961682 @default.
- W4386119003 hasConceptScore W4386119003C121608353 @default.
- W4386119003 hasConceptScore W4386119003C124504099 @default.
- W4386119003 hasConceptScore W4386119003C126322002 @default.
- W4386119003 hasConceptScore W4386119003C146849305 @default.
- W4386119003 hasConceptScore W4386119003C153180895 @default.
- W4386119003 hasConceptScore W4386119003C154945302 @default.
- W4386119003 hasConceptScore W4386119003C2778435480 @default.
- W4386119003 hasConceptScore W4386119003C2910564736 @default.
- W4386119003 hasConceptScore W4386119003C31972630 @default.
- W4386119003 hasConceptScore W4386119003C34736171 @default.
- W4386119003 hasConceptScore W4386119003C41008148 @default.
- W4386119003 hasConceptScore W4386119003C50644808 @default.
- W4386119003 hasConceptScore W4386119003C526805850 @default.
- W4386119003 hasConceptScore W4386119003C63099799 @default.
- W4386119003 hasConceptScore W4386119003C71924100 @default.
- W4386119003 hasConceptScore W4386119003C81669768 @default.
- W4386119003 hasLocation W43861190031 @default.
- W4386119003 hasOpenAccess W4386119003 @default.
- W4386119003 hasPrimaryLocation W43861190031 @default.
- W4386119003 hasRelatedWork W1840273037 @default.
- W4386119003 hasRelatedWork W2021143974 @default.
- W4386119003 hasRelatedWork W2045844866 @default.
- W4386119003 hasRelatedWork W2074857711 @default.
- W4386119003 hasRelatedWork W2108413430 @default.
- W4386119003 hasRelatedWork W2118331541 @default.
- W4386119003 hasRelatedWork W2549765251 @default.
- W4386119003 hasRelatedWork W2566648451 @default.
- W4386119003 hasRelatedWork W2897195263 @default.
- W4386119003 hasRelatedWork W2980182036 @default.
- W4386119003 isParatext "false" @default.
- W4386119003 isRetracted "false" @default.
- W4386119003 workType "article" @default.