Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386119371> ?p ?o ?g. }
- W4386119371 abstract "Background and purpose Traumatic brain injury (TBI) can cause progressive neuropathology that leads to chronic impairments, creating a need for biomarkers to detect and monitor this condition to improve outcomes. This study aimed to analyze the ability of data-driven analysis of diffusion tensor imaging (DTI) and neurite orientation dispersion imaging (NODDI) to develop biomarkers to infer symptom severity and determine whether they outperform conventional T1-weighted imaging. Materials and methods A machine learning-based model was developed using a dataset of hybrid diffusion imaging of patients with chronic traumatic brain injury. We first extracted the useful features from the hybrid diffusion imaging (HYDI) data and then used supervised learning algorithms to classify the outcome of TBI. We developed three models based on DTI, NODDI, and T1-weighted imaging, and we compared the accuracy results across different models. Results Compared with the conventional T1-weighted imaging-based classification with an accuracy of 51.7–56.8%, our machine learning-based models achieved significantly better results with DTI-based models at 58.7–73.0% accuracy and NODDI with an accuracy of 64.0–72.3%. Conclusion The machine learning-based feature selection and classification algorithm based on hybrid diffusion features significantly outperform conventional T1-weighted imaging. The results suggest that advanced algorithms can be developed for inferring symptoms of chronic brain injury using feature selection and diffusion-weighted imaging." @default.
- W4386119371 created "2023-08-25" @default.
- W4386119371 creator A5000438546 @default.
- W4386119371 creator A5016146461 @default.
- W4386119371 creator A5031059812 @default.
- W4386119371 creator A5033687321 @default.
- W4386119371 creator A5034790180 @default.
- W4386119371 creator A5042814171 @default.
- W4386119371 creator A5044189710 @default.
- W4386119371 creator A5047458912 @default.
- W4386119371 creator A5049249441 @default.
- W4386119371 creator A5050756470 @default.
- W4386119371 creator A5052483331 @default.
- W4386119371 creator A5065115679 @default.
- W4386119371 creator A5067894822 @default.
- W4386119371 creator A5067983968 @default.
- W4386119371 creator A5078317223 @default.
- W4386119371 creator A5092686347 @default.
- W4386119371 creator A5092686348 @default.
- W4386119371 date "2023-08-24" @default.
- W4386119371 modified "2023-09-24" @default.
- W4386119371 title "Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging" @default.
- W4386119371 cites W1563656983 @default.
- W4386119371 cites W1979062697 @default.
- W4386119371 cites W1990123505 @default.
- W4386119371 cites W2023787333 @default.
- W4386119371 cites W2024184249 @default.
- W4386119371 cites W2027399910 @default.
- W4386119371 cites W2032254014 @default.
- W4386119371 cites W2038745440 @default.
- W4386119371 cites W2080562691 @default.
- W4386119371 cites W2084236584 @default.
- W4386119371 cites W2100240119 @default.
- W4386119371 cites W2105250379 @default.
- W4386119371 cites W2109716894 @default.
- W4386119371 cites W2120474334 @default.
- W4386119371 cites W2129285116 @default.
- W4386119371 cites W2132424470 @default.
- W4386119371 cites W2253155352 @default.
- W4386119371 cites W2306237590 @default.
- W4386119371 cites W2408184452 @default.
- W4386119371 cites W2510620627 @default.
- W4386119371 cites W2559127480 @default.
- W4386119371 cites W2559605011 @default.
- W4386119371 cites W2598029772 @default.
- W4386119371 cites W2607941059 @default.
- W4386119371 cites W2768149277 @default.
- W4386119371 cites W2804912072 @default.
- W4386119371 cites W2895687530 @default.
- W4386119371 cites W2977883299 @default.
- W4386119371 cites W2989618988 @default.
- W4386119371 cites W3020614853 @default.
- W4386119371 cites W3047684611 @default.
- W4386119371 cites W3049304068 @default.
- W4386119371 cites W3106282212 @default.
- W4386119371 cites W3127709405 @default.
- W4386119371 cites W3156523967 @default.
- W4386119371 cites W3162431581 @default.
- W4386119371 cites W3207590424 @default.
- W4386119371 cites W4210887471 @default.
- W4386119371 cites W4223977076 @default.
- W4386119371 cites W4224434024 @default.
- W4386119371 cites W4230603309 @default.
- W4386119371 cites W4249537333 @default.
- W4386119371 cites W4250024550 @default.
- W4386119371 doi "https://doi.org/10.3389/fnins.2023.1182509" @default.
- W4386119371 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37694125" @default.
- W4386119371 hasPublicationYear "2023" @default.
- W4386119371 type Work @default.
- W4386119371 citedByCount "0" @default.
- W4386119371 crossrefType "journal-article" @default.
- W4386119371 hasAuthorship W4386119371A5000438546 @default.
- W4386119371 hasAuthorship W4386119371A5016146461 @default.
- W4386119371 hasAuthorship W4386119371A5031059812 @default.
- W4386119371 hasAuthorship W4386119371A5033687321 @default.
- W4386119371 hasAuthorship W4386119371A5034790180 @default.
- W4386119371 hasAuthorship W4386119371A5042814171 @default.
- W4386119371 hasAuthorship W4386119371A5044189710 @default.
- W4386119371 hasAuthorship W4386119371A5047458912 @default.
- W4386119371 hasAuthorship W4386119371A5049249441 @default.
- W4386119371 hasAuthorship W4386119371A5050756470 @default.
- W4386119371 hasAuthorship W4386119371A5052483331 @default.
- W4386119371 hasAuthorship W4386119371A5065115679 @default.
- W4386119371 hasAuthorship W4386119371A5067894822 @default.
- W4386119371 hasAuthorship W4386119371A5067983968 @default.
- W4386119371 hasAuthorship W4386119371A5078317223 @default.
- W4386119371 hasAuthorship W4386119371A5092686347 @default.
- W4386119371 hasAuthorship W4386119371A5092686348 @default.
- W4386119371 hasBestOaLocation W43861193711 @default.
- W4386119371 hasConcept C118552586 @default.
- W4386119371 hasConcept C119857082 @default.
- W4386119371 hasConcept C126838900 @default.
- W4386119371 hasConcept C138885662 @default.
- W4386119371 hasConcept C143409427 @default.
- W4386119371 hasConcept C148483581 @default.
- W4386119371 hasConcept C149550507 @default.
- W4386119371 hasConcept C153180895 @default.
- W4386119371 hasConcept C154945302 @default.
- W4386119371 hasConcept C2776401178 @default.
- W4386119371 hasConcept C2781017439 @default.