Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386128081> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4386128081 abstract "Assessing television presenters is a challenging yet essential task, as it requires considering numerous characteristics for their evaluation. A multi-modal approach is employed, utilizing various data sources such as eye gaze, gestures, and facial expressions. Automation of this process is crucial due to the exhaustive nature of presenter evaluation, where assessors need to evaluate the presenter based on all the aforementioned features. This paper proposes a system that assesses the presenter based on four key features, namely posture, eye contact, facial expression, and voice. Each feature is assigned a weight, and the presenter receives a grade based on their performance on each feature. The present study focused on facial emotion, eye tracking, and physical posture. The presenter’s elbow, shoulder, and nose joints were extracted, and they served as inputs for classifiers that were divided into three categories: machine learning algorithms, template-based algorithms, and deep learning algorithms to classify the presenter’s posture. For the eye gaze distance algorithms such as Euclidean distance and Manhattan distance were employed to analyze eye gaze, while facial expression analysis was conducted using the DeepFace library. The system proposed in this research paper achieved an accuracy of 92% utilizing SVM in the machine learning algorithms, 75% using dollarpy in the distance algorithm, besides 79% utilizing BiLSTM for the deep learning model. The data set used in this study was collected from faculty of Mass communication, MSA University." @default.
- W4386128081 created "2023-08-25" @default.
- W4386128081 creator A5020970788 @default.
- W4386128081 creator A5049151525 @default.
- W4386128081 creator A5068060711 @default.
- W4386128081 creator A5092688338 @default.
- W4386128081 creator A5092688339 @default.
- W4386128081 date "2023-07-15" @default.
- W4386128081 modified "2023-09-27" @default.
- W4386128081 title "News Presenter skills evaluation using multi-modality and machine learning" @default.
- W4386128081 cites W1857382374 @default.
- W4386128081 cites W2071702605 @default.
- W4386128081 cites W2097248932 @default.
- W4386128081 cites W2105543722 @default.
- W4386128081 cites W2107453881 @default.
- W4386128081 cites W2327544888 @default.
- W4386128081 cites W2791373727 @default.
- W4386128081 cites W2918210549 @default.
- W4386128081 cites W2921893861 @default.
- W4386128081 cites W2963265461 @default.
- W4386128081 cites W3016599596 @default.
- W4386128081 cites W3038651407 @default.
- W4386128081 cites W3093977761 @default.
- W4386128081 cites W3130243164 @default.
- W4386128081 cites W4281846940 @default.
- W4386128081 cites W4293239567 @default.
- W4386128081 doi "https://doi.org/10.1109/imsa58542.2023.10217597" @default.
- W4386128081 hasPublicationYear "2023" @default.
- W4386128081 type Work @default.
- W4386128081 citedByCount "0" @default.
- W4386128081 crossrefType "proceedings-article" @default.
- W4386128081 hasAuthorship W4386128081A5020970788 @default.
- W4386128081 hasAuthorship W4386128081A5049151525 @default.
- W4386128081 hasAuthorship W4386128081A5068060711 @default.
- W4386128081 hasAuthorship W4386128081A5092688338 @default.
- W4386128081 hasAuthorship W4386128081A5092688339 @default.
- W4386128081 hasConcept C119857082 @default.
- W4386128081 hasConcept C12267149 @default.
- W4386128081 hasConcept C138885662 @default.
- W4386128081 hasConcept C154945302 @default.
- W4386128081 hasConcept C159437735 @default.
- W4386128081 hasConcept C162324750 @default.
- W4386128081 hasConcept C187736073 @default.
- W4386128081 hasConcept C195704467 @default.
- W4386128081 hasConcept C207347870 @default.
- W4386128081 hasConcept C26517878 @default.
- W4386128081 hasConcept C2776401178 @default.
- W4386128081 hasConcept C2779916870 @default.
- W4386128081 hasConcept C2780226545 @default.
- W4386128081 hasConcept C2780451532 @default.
- W4386128081 hasConcept C31972630 @default.
- W4386128081 hasConcept C38652104 @default.
- W4386128081 hasConcept C41008148 @default.
- W4386128081 hasConcept C41895202 @default.
- W4386128081 hasConcept C52622490 @default.
- W4386128081 hasConcept C56461940 @default.
- W4386128081 hasConceptScore W4386128081C119857082 @default.
- W4386128081 hasConceptScore W4386128081C12267149 @default.
- W4386128081 hasConceptScore W4386128081C138885662 @default.
- W4386128081 hasConceptScore W4386128081C154945302 @default.
- W4386128081 hasConceptScore W4386128081C159437735 @default.
- W4386128081 hasConceptScore W4386128081C162324750 @default.
- W4386128081 hasConceptScore W4386128081C187736073 @default.
- W4386128081 hasConceptScore W4386128081C195704467 @default.
- W4386128081 hasConceptScore W4386128081C207347870 @default.
- W4386128081 hasConceptScore W4386128081C26517878 @default.
- W4386128081 hasConceptScore W4386128081C2776401178 @default.
- W4386128081 hasConceptScore W4386128081C2779916870 @default.
- W4386128081 hasConceptScore W4386128081C2780226545 @default.
- W4386128081 hasConceptScore W4386128081C2780451532 @default.
- W4386128081 hasConceptScore W4386128081C31972630 @default.
- W4386128081 hasConceptScore W4386128081C38652104 @default.
- W4386128081 hasConceptScore W4386128081C41008148 @default.
- W4386128081 hasConceptScore W4386128081C41895202 @default.
- W4386128081 hasConceptScore W4386128081C52622490 @default.
- W4386128081 hasConceptScore W4386128081C56461940 @default.
- W4386128081 hasLocation W43861280811 @default.
- W4386128081 hasOpenAccess W4386128081 @default.
- W4386128081 hasPrimaryLocation W43861280811 @default.
- W4386128081 hasRelatedWork W1561602432 @default.
- W4386128081 hasRelatedWork W1589443630 @default.
- W4386128081 hasRelatedWork W1999328396 @default.
- W4386128081 hasRelatedWork W2113986142 @default.
- W4386128081 hasRelatedWork W2127677160 @default.
- W4386128081 hasRelatedWork W2148584227 @default.
- W4386128081 hasRelatedWork W2168991662 @default.
- W4386128081 hasRelatedWork W2385108104 @default.
- W4386128081 hasRelatedWork W2769824675 @default.
- W4386128081 hasRelatedWork W2183271128 @default.
- W4386128081 isParatext "false" @default.
- W4386128081 isRetracted "false" @default.
- W4386128081 workType "article" @default.